Starting Forth's home-page

A tribute to this great book by Leo

Brodie...

1400
1200 |
10606 |

B0 |

hils per weak

600 |

400 |

200 |

0 20 40 60 80

Starting Forth First Edition, Introductions.
Chapter 1 Fundamental Forth

Chapter 2 How to Get Results

Chapter 3 The Editor (and Staff)

Chapter 4 Decision, Decisions, ...

Chapter 5 The Philosophy of Fixed Point
Chapter 6 Throw it for aLoop

Chapter 7 A Number of Kinds of Numbers
Chapter 8 Variables, Constants, and Arrays
Chapter 9 Under the Hood

Chapter 10 1/0 and You

http://home.iae.nl/users/mhx/sf.html (1 of 2) [2/24/2005 12:36:58 PM]

100
wesk# since Jul 28 1998

120

140

160

180

200

Starting Forth's home-page
Chapter 11 Extending the Compiler
Chapter 12 Three Examples
Thinking Forth?

Comments appreciated: c/o Marcel Hendrix - mhx@iae.nl

you're being
counted

http://home.iae.nl/users/mhx/sf.html (2 of 2) [2/24/2005 12:36:58 PM]

http://prdownloads.sourceforge.net/thinking-forth/thinking-forth-color.pdf?download
mailto:mhx@iae.nl
http://validator.w3.org/

Leo Brodie's Starting Forth - Intro

Starting FORTH

by

Leo Brodie

About the Author

Leo Brodie'sinability to express even the most complex technical concepts without adding a twist of humor comes from an early love of
comedy. He specialized in playwriting at UCLA and has had several comedies produced there and in local theater. He has also written
freelance magazine articles and has worked as a copywriter for an add agency. When a company he was working for installed a computer, he
became inspired to try designing a microprocessor-based toy. Although he never got the toy running, he learned a lot about computers and
programming. He now works at Forth, Inc. as atechnical and marketing writer, where he can play on the computers as the muse determines
without having to be afanatical computer jockey, and is allowed to write books such as this.

Leo's other interests include singing, driving classic Volvos, and dancing to 50's music.

http://home.iae.nl/users/mhx/sf0/sf0.html (1 of 10) [2/24/2005 12:37:06 PM]

Leo Brodie's Starting Forth - Intro

Foreword

The Forth community can celebrate a significant event with the publication of Sarting Forth. A greater effort,
talent, and commitment have gone into this book than into any previous introductory manual. I, particularly, am
pleased at this evidence of the growing popularity of Forth, the language.

| developed Forth over the period of some years as an interface between me and the computers | programmed. The
traditional languages were not providing the power, ease, or flexibility that | wanted. | disregarded much
conventional wisdom in order to include exactly the capabilities needed by a productive programmer. The most
important of these is the ability to add whatever capabilities later become necessary.

Thefirst time | combined the ideas | had been developing into asingle entity, | was working on an IBM 1130, a
"third-generation" computer. The result seemed so powerful that | considered it a"fourth-generation computer
language." | would have called it FOURTH, except that the 1130 permitted only five-character identifiers. So
FOURTH became FORTH, a nicer play on words anyway.

One principle that guided the evolution of Forth, and continues to guide its application, is bluntly: Keep It Simple.
A simple solution has elegance. It isthe result of exacting effort to understand the real problem and is recognized
by its compelling sense of rightness. | stress this point because it contradicts the conventional view that power
increases with complexity. Simplicity provides confidence, reliability, compactness, and speed.

Sarting Forth was written and illustrated by Leo Brodie, a remarkably capable person whose insight and
imagination will become apparent. This book is an original and detailed prescription for learning. It deftly guides
the novice over the thresholds of understanding that al Forth programmers must cross.

Although | am the only person who has never had to learn Forth, | do know that its study is aformidable one. As -
with a human language, the usage of many words must be memorized. For beginners, Leo's droll comments and superbly cast characters appear to make this study
easy and enjoyable. For those like myself who already know Forth, a quick reading provides adelightful trip and fresh views of familiar terrain. But | hope this book
is not so easy and enjoyable that it seemstrivial. Be warned that there is heavy content here and that you can learn much about computers and compilers as well as
about programming.

Forth provides a natural means of communication between man and the smart machines he is surrounding himself with. This requires that it share characteristics of
human languages, including compactness, versatility, and extensibility. | cannot imagine a better language for writing programs, expressing algorithms, or
understanding computers. Asyou read this book, | hope that you may cometo agree.

CharlesH. Moore
Inventor of Forth

http://home.iae.nl/users/mhx/sf0/sf0.html (2 of 10) [2/24/2005 12:37:06 PM]

Leo Brodie's Starting Forth - Intro

About This Book

Welcome to Sarting Forth, your introduction to an exciting and powerful computer language called Forth.

If you're a beginner who wants to learn more about computers, Forth is a great way to learn. Forth is more fun to write programs with than any language that | know
of. (See the "Introduction for Beginners.")

If you are a seasoned professional who wants to learn Forth, this book isjust what you need. Forth is a very different approach to computers, so different that
everyone, from newcomers to old hands, learns Forth best from the ground up. If you're adept at other computer languages, put them out of your mind for now, and
remember only what you know about computers. (See the "Introduction for Professionals.")

Since many people with different backgrounds are interested in Forth, I've arranged this book so that you'll only have to read what you need to know, with footnotes
addressed to different kinds of readers. The first half of Chap. 7 provides a background to computer arithmetic for beginners only.

This book explains how to write simple applications in Forth. It includes all standard Forth words that you need to write a high-level single-task application. This
word set is an extremely powerful one, including everything from simple math operators to compiler-controlling words. (ANS Forth standard online)

Excluded from this book are all commands that are related to the assembler, target compiler and other specialized utilities. These commands are available on some
versions of Forth such as eForth and most commercia implementations. (Forth vendors)

I've chosen examples that will actually work on a Forth system with aterminal and a disk. Don't infer from this that Forth is limited to batch or string-handling tasks,
since thereisrealy no limit to Forth's usefulness.

Here are some features of this book that will make it easy to use:
All commands are listed twice: first, in the section in which the word is introduced, and second, in the summary at the end of that chapter.
Each chapter also has areview of terms and a set of exercise problems, with answers.

Several "Handy Hints" have been included to reveal procedural tips or optional routines that are useful for learners but that don't merit an explanation as to how or
why they work.

A personal note: Forth isavery unusual language. It violates many cardinal rules of programming. My first reaction to Forth was extremely sceptical, but as | tried to
develop complicated applications | began to seeits beauty and power. Y ou owe it to yourself to keep an open mind while reading about some of its peculiarities. I'll
warn you now: few programmers who learn Forth ever go back to other languages.

Good luck, and enjoy learning!

Leo Brodie
FORTH, Inc.

http://home.iae.nl/users/mhx/sf0/sf0.html (3 of 10) [2/24/2005 12:37:06 PM]

http://www.complang.tuwien.ac.at/forth/dpans-html/dpans.htm
http://isc.faqs.org/faqs/computer-lang/forth-faq/part3/

Leo Brodie's Starting Forth - Intro

Acknowledgements

I'd like to thank the following people who helped to make this book possible:

For consultation on Forth technique and style: Dean Sanderson, Michagl LaManna, James Dewey, Edward K. Conklin, and Elizabeth D. Rather, all of FORTH Inc.;
for providing insights into the art of teaching Forth and for writing several of the problemsin this book: Kim Harris of the Forth Interest Group; for proofreading,
editorial suggestions, and enormous amounts of work formatting the pages: Carolyn A. Rosenberg; for help with typing and other necessities: Sue Linstrot, Carolyn
Lubisich, Kevin Weaver, Kris Cramer, and Stephanie Brown Brodie; for help with the graphics: Winnie Shows, Natasha Elbert, Barbara Roberts, and John Dotson of
Sunrise Printery (Redondo Beach, CA); for technical assistance: Bill Patterson and Gary Friendlander; for constructive criticism, much patience and love: Stephanie
Brown Brodie; and for inventing Forth: Charles H. Moore.

Comments on the Web Edition

Sarting Forth, First Edition isfrom 1981. These web pages were entered from memory in 2003, when it became apparent that SF might never be re-issued by the
copyright holder. A small supply of about 500 books is all that was available in April 2003.

When you can get hold of the original, do so.

Thistranscript isinaccurate. Forth code has been ANSified. All code should run on, at least iForth. Where necessary, statements that were valid in 1981 have been
exchanged with statements more appropriate for 2003.

Sarting Forth isfull of very difficult to reproduce graphics. These enormously enhance the text's mnemonic value, and are invaluable for afirst-time Forth user. |
have therefore added "substitute” graphic elements, roughly at the same spot where they arein the original. The original graphics are, of course, much better.

In thistranscript | have assumed a 32-bit, byte-addressing Forth, with 8-bit characters. Multitasking issues are ignored (e.g. no >TY PE, just TYPE). Divisionis
symmetric, not floored, and two's complement is assumed throughout. iForth works splendidly with it, but other Forths will work too. Chapter 7 exploits extended
uses of number conversion. Most Forths are broken in this respect, but iForth and SwiftForth support these neat features.

Introductions

Introduction for Beginners: What is a Computer Language?

http://home.iae.nl/users/mhx/sf0/sf0.html (4 of 10) [2/24/2005 12:37:06 PM]

http://theforthsource.com/catalog.html

Leo Brodie's Starting Forth - Intro

At first when beginners hear the term "computer language,” they wonder, "What kind of language could a computer possibly speak? It must
be awfully hard for people to understand. It probably looks like:

976#! @NX714&+
if it looks like anything at all."

Actually a computer language should not be difficult to understand. Its purpose is simply to serve as a convenient compromise for
communication between a person and a computer.

Consider the marionette. Y ou can make a marionette "walk" simply by working the wooden control, without even touching the strings. Y ou
could say that rocking the control means "walking" in the language of the marionette. The puppeteer guides the marionette in away that the
marionette can understand and that the puppeteer can easily master.

Computers are machines just like the marionette. They must be told exactly what to do, in specific language. And so we need alanguage
which possesses two seemingly opposite traits:

On the one hand, it must be precise in its meaning to the computer, conveying all the information that the computer needs to know to
perform the operation. On the other hand, it must be simple and easy-to-use by the programmer.

Many languages have been developed since the birth of computers: Fortran is the elder statesman of the field; COBOL is still the standard
language for data processing; BASIC was designed as a beginner's language along the road toward languages like Fortran and COBOL ; C
and Java are the general purpose application languages of the 90's. This book is about avery different kind of language: Forth. Forth's
popularity has kept constant over the past several years, and its popularity is shared among programmersin all fields.

All the languages mentioned above, including Forth, are called "high-level" languages. It's important for beginners to recognize the
difference between a high-level language and the computer it runs on. A high-level language looks the same to a programmer regardless of
which make or model of computer it's running on. But each make or model has its own internal language, or "machine language.” To explain what a machine language
is, let's return to the marionette.

Imagine that there is no wooden control and that the puppeteer has to deal directly with the strings. Each string corresponds to exactly one part of the marionette's
body. The harmonious combinations of movements of the individua strings could be called the marionette's "machine language.”

http://home.iae.nl/users/mhx/sf0/sf0.html (5 of 10) [2/24/2005 12:37:06 PM]

Leo Brodie's Starting Forth - Intro
Now tie the strings to a control. The control is like a high-level language. With a simple turn of the wrist, the puppeteer can
move many strings simultaneously.

So it iswith ahigh-level computer language, where the simple and familiar symbol "+" causes many internal functionsto be
performed in the process of addition.

Here's a clever thing about a computer: it can be programmed to translate high-level symbols (such as"+") into the computer's

own machine language. Then it can proceed to carry out the machine instructions. A high-level language is a computer

H ig h-level la hguage program that translates humanly understandabl e words and symbols into the machine language of the particular make and
model of computer.

h|:<- +

What's the difference between Forth and other high-level languages? To put it very briefly: it has to do with the compromise
T ————— between man and computer. A language should be designed for the convenience of its human users, but at the same time for
_ compatibility with the operation of the computer.

Machire instruction Forth is unique among languages because its solution to this problem is unique. This book will explain how.

Machire instruction

Introduction for Professionals: Forth in the Real World

Forth enjoyed arising tide of popularity up to around 1994, (ANS and 1SO Forth standards), perhaps most visibly among enthusiasts and hobbyists. After 1996 or so
Forth's popularity has stayed relatively constant. But this development is only anew wrinkle in the history of Forth. Forth has been in use from 1972 on, in critical
scientific and industrial applications. In fact, if you use a mini- or microcomputer professionally, chances are that Forth can run your application--more efficiently than
the language you're presently using.

Now you'll probably ask rhetorically, "If Forthis so efficient, how come I'm not using it?" The answer is that you, like most people, don't know what Forthiis.

To really get an understanding of Forth, you should read this book and, if possible, find a Forth system and try it for yourself. For those of you who are still at the
bookstore browsing, however, this section will answer two questions: "What is Forth?' and "What is it good for?"

Forth is many things:

« ahigh-level language

« an assembly language

« an operating system

« aboot loader and device driver layer for operating systems

« achip design CAD system

« aset of development tools

«» asoftware design philosophy
As alanguage, Forth begins with a powerful set of standard commands, then provides the mechanics by which you can define your own commands. The structural
process of building definitions upon previous definitions is Forth's equivalent of high-level coding. Alternatively, words may be defined directly in assembler

mnemonics, using Forth's assembler. All commands are interpreted by the same interpreter and compiled by the same compiler, giving the language extreme
flexibility.

The highest level of your code will resemble an English-language description of your application. Forth has been called a " meta-application language'--a language
that you can use to create problem-oriented languages.

http://home.iae.nl/users/mhx/sf0/sf0.html (6 of 10) [2/24/2005 12:37:06 PM]

Leo Brodie's Starting Forth - Intro

As an operating system, Forth does everything that traditional operating systems do, including interpretation, compilation, assembling, virtual memory handling, /0O,
text editing, etc.

But because the Forth operating system is much simpler than itstraditional counterparts due to Forth's design, it runs much more quickly, much more conveniently,
and in much less memory.

What is Forth good for? Forth offers a simple means to maximize a processor's efficiency. For example:

Forth isfast. High-level Forth executes as fast as other high-level languages and between 20 to 75% slower than equivalent assembly-language programs, while
time-critical code may be written in assembler to run at full processor speed. Without a traditional operating system, Forth eliminates redundancy and needless
run-time error checking.

Forth compiled code is compact. Forth applications require less memory than their equivalent assembly-language programs and consume less power (important for
hand-helds and portable gadgets!) Written in Forth, the entire operating system and its standard word set reside in less than 8K bytes. Support for atarget application
may require less than 1K bytes.

Forth is transportable. It has been implemented on just about every mini- and microcomputer known to the industry. Most microcontrollers and DSPs, even tiny ones,
also have a Forth implementation.

Forth has been known to cut program devel opment time by afactor of ten for equivalent assembly-language programming and by a factor of two for equivalent
high-level programming in C or Java. Productivity increases because Forth epitomizes "structured programming” and because it is interactive and modular.

Here are afew samples of Forth in the real world (FORTH, Inc., MPE):

« AVCO/Textron Systems, building automation and auxiliary services for King Khaled International Airport (Saudi Arabia). System contains nine PDP 11/44s,
378 8086-based computers, and 320 8085-based security processors,collectively monitoring and controlling over 36,000 points.

« Eastman Kodak Company, quality control system monitoring photographic film density. Includes film motion control, automatic recognition of film density
steps, and custom | EEE-488 bus interface.

« Federal Express, hand-held SuperTracker, carried by every FedEx delivery agent. Contains bar-code reader, keyboard, 2x20 line display. Performs extensive
package entry and tracking functions, including cross index from airport code to all 10,000 US zip codes. Includes smart power-off
sequencing to extend battery life.

« NASA Goddard Space Flight Center:

1. Control of 50-foot long, six-joint arm for Space Shuttle simulator. Extensive math routines convert two three-axis joystick
commands into required joint velocitiesin six different co-ordinate systems.

http://home.iae.nl/users/mhx/sf0/sf0.html (7 of 10) [2/24/2005 12:37:06 PM]

http://www.forth.com/resources/appNotes/index.html
http://www.mpeltd.demon.co.uk/forth.htm
http://www.inventio.co.uk/Hpo2.htm

Leo Brodie's Starting Forth - Intro
2. Multitasking operating system, Forth language compiler, and libraries for
UT69R000 radiation-hardened microprocessor used in Space Shuttle
instrumentation.

3. Development of the Forth-based Small Payload Accomodations Interface
Module (SPAIM), which interfaces the Shuttle Solar Backscatter
Ultraviolet (SSBUV) instrument to the Space Shuttle's avionic systems.
The SSBUV instrument is used to calibrate ozone-measuring instruments
aboard NOAA satellites.

« Owens-Corning Fiberglas, Owens-Corning has used Forth for many years asthe £
basic firmwareinits distributed industrial controllers. These controllers perform
awide variety of functions, managing winders, weighing devices, etc., used in
the manufacture of various fiberglass products. Plantsin Korea and Mexico also
use FORTH, Inc.'s EXPRESS to provide supervisory control and reporting
functions. e

« Saturn Corp, distributed HVAC system for entire Saturn automobile assembly plant, controlling over two hundred 40 hp. heating - cooling - humidifying units
(with Z-80s) over atwo-tier network using PCs as text and graphical system monitors. Outside air sensors provide inputs for intelligent set-point control and
economic use of gas heating and chilled-water cooling systems.

« Sacramento Municipal Utilities District (California): photovoltaic arraysin the state capitol feature EXPRESS to provide user-configurable live trending,

historical trending, alarm/exception reporting, rule-tracking, 1/0 system exerciser, class-based real-time database, graphical

process displays, simultaneous multiple vendor I/O system scanning, I/0O and process simulation for development, and
multiple remote terminal access with full graphics. Custom drivers for the Digitronics Sixnet(TM) 1/O system were provided
in one week; EXPRESS already supports Modicon, Allen-Bradley, OPTO-22 OPTOMUX and PAMUX, plus others.

University of Minnesota, PC-based system for telescope control and data taking (over IEEE-488 bus), data analysis and
graphics display. Includes provision for remote observing, using a custom protocol to multiplex packets from three
independent data streams over a single telephone line.

VertexRSI (Div. of Tripoint Global), software for custom satellite tracking receivers. Includes frequency synthesizer control,

http://home.iae.nl/users/mhx/sf0/sf0.html (8 of 10) [2/24/2005 12:37:06 PM]

Leo Brodie's Starting Forth - Intro
remote RS-232 command port, vacuum fluorescent graphics display.

« A mobile phone manufacturer is introducing a new games engine derived from the SENDIT project. This uses a Forth-based virtual
machine to reduce the size of games in the phone, and to permit more functionality to be provided in the phone without increasing
memory size.

« A recent consultancy project based on MPE 8051 and ARM hardware, will introduce a new range of vending machines to the market. :

« Construction Computer Software (CCS) in Cape Town produce the MARS and CANDY applications which are astandard all over ==
the world. The CCS software is an example of alarge-scale Windows application written in ProForth for Windows, and the VFX 8
Forth version aready consists of over 850,000 lines of code. CCS software was used to plan the new Chai Tak airport in Hong Kong.
The CCSweb siteis here.

« Barefoot Auditor is used by Microsoft for collecting information about their own PCs, and was written using one of MPE's Forth
systems. Barefoot Auditor has been available on several magazine cover disks recently, and more information is available from
Pathfinder.

!fﬁ-‘q - rﬂﬁ

Micross Electronics, use MPE's ProForth for Windows at the heart of their commercial Iaundry control systems, and MPE's Forth 6

cross compilers for the PLCs performing real time control. These systems are installed in many countries, and you may have slept in
sheets washed by the Micross Tracknet control systems.

« Forth virtual machine runs payment terminals. Europay International's Open Terminal Architecture (OTA). OTA uses avirtual machine (VM) architecture to
deliver payment terminal applications directly to payment terminals regardless of their hardware or CPU. The OTA VM has been installed on arange of CPUs
and is now being deployed. The OTA project involved up to 30 programmers working in several locations on two continents. OTA is described here.

Nlltlt()‘x‘-:

NOEY SVETEMS

There's a catch we must admit. It is that Forth makes you responsible for your computer's efficiency. To draw an analogy: a manual transmission is tougher to master
than an automatic, yet for many driversit offersimproved control over the vehicle.

Similarly, Forth is tougher to master than traditional high-level languages, which essentially resemble one another (i.e., after learning one, it is not difficult to learn
another). Once mastered, however, Forth gives you the capability to minimize CPU time and memory space, as well as an organizing philosophy by which you can
dramatically reduce project development time.

And remember, all of Forth's elements enjoy the same protocol, including operating system (sometimes), compiler, interpreters, text editor, virtual memory,
assembler, and multiprogrammer. The learning curve for Forth is much shorter than that for all these separate elements added together.

If al of this sounds exciting to you, turn the page and start Forth.

http://home.iae.nl/users/mhx/sf0/sf0.html (9 of 10) [2/24/2005 12:37:06 PM]

http://www.ccssa.com/
http://www.micross.co.uk/
http://www.forth.org.ru/~mlg/std/ota-about/otawords.html

Leo Brodie's Starting Forth - Intro

you're being
counted

WaC %

http://home.iae.nl/users/mhx/sf0/sf0.html (10 of 10) [2/24/2005 12:37:06 PM]

http://validator.w3.org/

Leo Brodie's Starting Forth - Chapter 1

1 Fundamental Forth

In this chapter we'll acquaint you with some of the unigque properties of the Forth language. After afew introductory pages we'll have you
sitting at a Forth terminal.

A Living Language

Imagine that you're an office manager and you've just hired a new, eager assistant. On the first day, you teach the assistant the proper
format for typing correspondence. (The assistant already knows how to type.) By the end of the day, all you have to do is say "Please type
this."

On the second day, you explain the filing system. It takes all morning to explain where everything goes, but by the afternoon all you have
to say is "Please file this."

By the end of the week, you can communicate in akind of shorthand, where "Please send thisletter" means "Type it, get meto sign it,
photocopy it, file the copy, and mail the original." Both you and your assistant are free to carry out your business more pleasantly and
efficiently.
Good organization and effective communication require that you

1. define useful tasks and give each task a name, then

2. group related tasks together in larger tasks and give each of these a name, and so on.

Forth lets you organize your own procedures and communicate them to a computer in just this way (except you don't have to say "please’").

As an exampl e, imagine a microprocessor-controlled washing machine programmed in Forth. The ultimate command in your example is
named WASHER. Here is the definition of WASHER, as written in Forth:

WASHER WASH SPIN RI NSE SPI N ;
In Forth, the colon indicates the beginning of a new definition. The first word after the colon, WASHER, is the name of the new procedure.

The remaining words, WASH, SPI N, RI NSE and SPI N, comprise the "definition" of the new procedure. Finally, the semicolon indicates
the end of the definition.

=
: WASHER @ ;

Each of the words comprising the definition of WASHER has already been defined in our washing-machine application. For example, let's
look at our definition of RI NSE:

RINSE FAUCETS OPEN TILL-FULL FAUCETS CLCSE ;

In this definition we are referring to things (faucets) as well as actions (open and close). Theword Tl LL- FULL has been defined to create
a"delay-loop" which does nothing but mark time until the water-level switch has been activated, indicating that the tub is full.

If we were to trace these definitions back, we would eventually find that they are all defined in terms of a group of very useful commands
that form the basis of all Forth systems. For example, a complete ANS Forth with all extensions includes 371 such commands. Many of
these commands are themselves "colon definitions' just like our example words; others are defined directly in the machine language of the

(%)

The ability to define aword in terms of other wordsis called "extensibility.” Extensibility leads to a style of programming that is extremely
simple, naturally well-organized, and as powerful as you want it to be.

particular computer. In Forth, a defined command is called a "word.'

Whether your application runs an assembly line, acquires data for a scientific environment, maintains a business application, or plays a
game, you can create your own "living language" of words that relate to your particular need.

In this book we'll cover the most useful of the standard Forth commands.

http://home.iae.nl/users/mhx/sfl/sf1.html (1 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1
All This and ... Interactive!

(*)

One of Forth's many unique features isthat it lets you "execute" aword by simply naming the word. If you're working at aterminal
keyboard, this can be as simple as typing in the word and pressing the RETURN key.

Of course, you can also use the same word in the definition of any other word, simply by putting its name in the definition.

Forthis called an "interactive" language because it carries out your commands the instant that you enter them.

WEe're going to give an example that you can try yourself, showing the process of combining simple commands into more powerful
commands. We'll use some simple Forth words that control your terminal screen. But first, let's get acquainted with the mechanics of
"talking" to Forth through your terminal's keyboard.

|
- Take a seat at your real or imaginary Forth termina. We'll assume ,
2 that someone has been kind enough to set everything up for you, o
T , or that you have followed al the instructions given for loading ;
" A Forth on your particular computer.

s \| O\ press the key |abel ed:
(%)

The computer will respond by saying
ok

i RETURN

The RETURN key is your way of telling Forth to acknowledge .
your request. The ok is Forth's way of saying that it's done =

everything you asked it to do without any hangups. In this case, you didn't ask it to do anything, so
Forth obediently did nothing and said ok.

Now enter this:
15 SPACES

*
If you make atyping mistake, you can correct it by hitting the "backspace” key. Back up to the mistake, enter the correct letter, and
continue. When you have typed the line correctly, press the RETURN key. (Once you press RETURN, it's too late to correct theline.)

In this book, we use the symbol to mark the point where you must press the RETURN key. We also underline the computer's output
(even though the computer does not) to indicate who is typing what.

Here's what has happened:
15 SPACEYJ] ok

As soon as you pressed the return key, Forth printed fifteen blank spaces and then, having processed your request, responded ok (at the end
of the fifteenth space).

Now enter this:

42 EMT * ok

Thephrase” 42 EM T" tells Forth to print an asterisk (we'll discuss this command later on in the book.) Here Forth printed an asterisk,
then responded ok.

We can put more than one command on the same line. For example:
15 SPACES 42 EMT 42 EM Il_‘JI ** ok

Thistime Forth printed fifteen spaces and two asterisks. A note about entering words and/or numbers. we can separate them from another
by as many spaces as we want for clarity. But they must be separated by at |east one space for Forth to be able to recognize them as words
and/or numbers.

http://home.iae.nl/users/mhx/sfl/sf1.html (2 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1

Instead of entering the phrase
42 EM T
over and over, let'sdefineit asaword called " STAR. "

Enter this:

STAR 42 EMT ;. ok

Here STARisthename; " 42 EM T" isthe definition. Notice that we set off the colon and semicolon from adjacent words with a space.
Also, to make Forth definitions easy for human beings to read, we conventionally separate the name of the definition from its contents with
three spaces.

After you have entered the above definitions and pressed RETURN, Forth responds ok, signifying that it has recognized your definition and
will remember it. Now enter

STAI'. * ok
Voilal Forth executes your definition of " STAR" and prints an asterisk.

There is no difference between aword such as STAR that you define yourself and aword such as EMIT that is already defined. In this
book, however, we will print those words that are already defined in blue, so that you can more easily tell the difference.

*
Another system-defined word is CR, which performs a carriage return and line feed at your terminal. For example, enter this:

.'<

ok

Asyou can see, Forth executed a carriage return, then printed ok (on the next line).

Now try this:
CR STAR CR STAR CR STA
*
*
* ok

Let's put a CR in adefinition, like this:
: MARGA N CR 30 SPACES ;. ok

Now we can enter
MARG N STAR MARG N STAR MARG N STA

and get three stars lined up verticaly, thirty spaces in from the left.

Our MARA N STAR combination will be useful for what we intend to do, so let's define
BLI P MARG N STAR ; ok

Wewill also need to print aahorizontal row of stars. So let's enter the following definition (we'll explain how it worksin alater chapter):

STARS 0 DO STAR LOOP ;. ok

Now we can say

5 STAR‘ *rrxx ok

35 STAR%“JI R b b b S S I b S S R Ok

or

or any number of stars imaginable.

We will need aword which performs MARG N, then prints five stars. Let's define it like this:

BAR MARGA N 5 STARS ;. ok

Now we can enter

http://home.iae.nl/users/mhx/sfl/sf1.html (3 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1

BAR BLI P BAR BLIP BLIP CR
and get aletter "F" (for Forth) made up of stars. It should look like this:

*kk k%
*
*kk k%
*

*

Thefinal step isto make this new procedure aword. Let's call theword "F":

F BAR BLI P BAR BLIP BLIP CR ;. ok

You've just seen an example of the way simple Forth commands can become a foundation for more complex commands. A Forth
application, when listed, consists of a series of increasingly powerful definitions rather than a sequence of instructions to be executed in
order.

To give you asample of what a Forth application really looks like, here's alisting of our experimental application:

(Large letter F)
. STAR 42 EMT ;
STARS 0 DO STAR LOOP ;
MARG N CR 30 SPACES ;
BLI P MARG N STAR ;
BAR MARG N 5 STARS ;
F BAR BLI P BAR BLIP BLIP CR ;

The Dictionary

Each word and its definition are entered into Forth's "dictionary.” The dictionary aready contained many words when you started, but your
own words are now in the dictionary as well.

When you define a new word, Forth translates your definition into dictionary form and writes the
(*)

For example, when you enter the line
: STAR [CHAR] * EMIT ; . STAR [CHAR| * EMT

the compiler compiles the new definition (it doesthe sameas" 42 EM T" but
Star v doesn't use magic numbers) into the dictionary. The compiler does not print the

Print an asterisk | 1%

entry in the dictionary. This processis called "compiling.'

Once aword isin the dictionary, how isit executed? Let's say you enter the following
line directly at your terminal (not inside a definition):

STAR 30 SPACE

Thiswill activate aword called INTERPRET, also known as the "text interpreter.” The text mterpreter scans the input stream, looking for
strings of characters separated by spaces. When astring is
found, it islooked up in the dictionary. If theword isin the
dictionary, it is pointed out to aword called EXECUTE.
EXECUTE executes the definition (in this case an asterisk is
printed). Finally, the interpreter says everything's "ok."

—

the interpreter cannot find the string in the dictionary, he calls the
number-runner (called NUMBER). NUMBER knows a number when he

http://home.iae.nl/users/mhx/sfl/sf1.html (4 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1
seesone. If NUMBER finds a number, he runsit off to atemporary storage location for numbers.

What happens when you try to execute aword that is not in the dictionary? Enter this and see what happens:

XL ERI. XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to passit off on
NUMBER. NUMBER shinesit on. Then the interpreter returns the string to you with a
question mark (Some Forths print various error messages along with this.)

ANS Forth allows up to thirty-one characters of a name to be stored in the dictionary. A name
should contain only graphic characters.

To summarize: when you type a pre-defined word at the terminal, it gets interpreted and then

executed. T{Eﬁ‘
Now remember we said that : isaword? When you type theword :, asin %cﬁi
STAR [CHAR] * EMT ;

the following occurs:

The text interpreter finds the colon in the input stream, and pointsit out to EXECUTE. The
compiler translates the definition into dictionary form and writesit in the dictionary. When the
compiler gets to the semicolon, he stops, and execution returns to the text interpreter, who
gives the message ok.

Say What?

In Forth, aword is a character or group of characters that have a definition. Almost any character can be used in naming aword. The
reasons that some of the control characters cannot be used are:

return because the computer thinks you've finished entering.

because the computer thinks you are trying to correct atyping
error.

space because the computer thinksiit's the end of the word.

backspace

Hereis a Forth word whose name consists of two punctuation marks. Theword is." and it is pronounced dot-quote. Y ou can use ." inside a
definition to type a string of text at your terminal. Here's an example:

GREET ." Hello, | speak Forth " ;. ok

We'vejust defined aword called GREET. It's definition consists of just one Forth word, .", followed by the text that we want typed. The
quotation mark at the end of the text will not be typed; it marks the end of the text. It's called a "delimiter."

When entering the definition of GREET, don't forget the closing ; to end the definition.

Let's execute GREET:
GREETE Hell o, | speak Forth ok

The Stack: Forth's Worksite for Arithmetic

A computer would not be much good if it couldn't do arithmetic. If you never studied computers before, it may seem pretty amazing that a
computer (or even a pocket calculator) can do arithmetic at all. We can't cite al the mechanics in this book, but believe us, it's not a
miracle.

In general, computers perform their operations by breaking everything they do into ridiculously tiny pieces of information and ridiculously
easy thingsto do. To you and me, "3 + 4" isjust "7," without even thinking. To a computer, "3 + 4" is actually avery long list of things to
do and remember.

Without getting too specific, let's say you have a pocket calculator which expects its buttons to be pushed in this order:

http://home.iae.nl/users/mhx/sfl/sf1.html (5 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1

3 |+ (| 4

in order to perform the addition and display the result. Here's a generalized picture of what might occur:

When you press
MName of
3 Box A ol Operation

3
--the number 3 goes into one place (called Box A).
a Box A Box B Ll
3 +

--the intended operation (addition) is remembered somehow.

4

--the number 4 is stored into a second place (called Box B).

B =

--the calculator performs the operation that is stored in the "Next Operation" Box on the contents of the number boxes and |eaves the result
inBox A.

Mare of
Operation

Many calculators and computers approach arithmetic problemsin away similar to what we've just described. Y ou may not be aware of it,
but these machines are actually storing numbersin various locations and then performing operations on them.

In Forth, there is one central |ocation where numbers are temporarily stored before being operated on. That location is called the "stack.”
Numbers are "pushed onto the stack,” and then operations work on the numbers on the stack.

The best way to explain the stack isto illustrate it. If you enter the following line at your terminal:

34 + . 7 ok
here is what happens, key by key.

http://home.iae.nl/users/mhx/sfl/sf1.html (6 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1

Recall that when you enter a number at your terminal, the text interpreter hands it over to NUMBER, who runsit to some
location. That location, it can now be told, is the stack. In short, when you enter the number three from the terminal, you

push it onto the stack. o o
Now the four goes onto the "top" of the stack and pushes the three downward. POOF!:’]_J
W

The next word in the input stream can be found in the dictionary. + has been previously defined to "take the top two
numbers off the stack, add them, and push the result back onto the stack."

'TERMINAL

—
The next word, ., isalso found in the dictionary. It has been previously defined to take the number off the stack and print it at the terminal.

Postfix Power

Now wait, you say. Why does Forth want you to type
34+

instead of
3 +4

which is more familiar to most people?

Forth uses "postfix" notation (so called because the operator is affixed after the numbers) rather than "infix" notation (so called because the

(%)

operator is affixed in-between the numbers) so that all words which "need" numbers can get them from the stack.

For example:
« theword + gets two numbers from the stack and adds them;
« theword . gets one number from the stack and printsit;
« theword SPACES gets one number from the stack and prints that many spaces,
« theword EMIT gets a number that represents a character and prints that character;
« eventheword STARS, which we defined ourselves, gets a number from the stack and prints that many stars.

When all operators are defined to work on the values that are already on the stack, interaction between many operations remains simple
even when the program gets complex.

Earlier we pointed out that Forth |ets you execute aword in either of two ways: by simply naming it, or by putting it in the definition of
another word and naming that word. Postfix is part of what makes this possible.

http://home.iae.nl/users/mhx/sfl/sf1.html (7 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1

Just as an example, let's suppose we wanted aword that will always add the number 4 to whatever number is on the stack (for no other
purpose than to illustrate our point). Let's call the word

FOUR- MORE

We could define it this way:
FOUR- MORE 4 + ;
and test it thisway:
3 FOUR- MORE . 7 ok

and again:
-10 FOUR- MORE . -6 ok

The "4" inside the definition goes onto the stack, just asit would if it were outside a definition. Then the + adds the two numbers on the
stack. Since + always works on the stack, it doesn't care that the "4" came from inside the definition and the three from outside.

As we begin to give some more complicated examples, the value of the stack and of postfix arithmetic will become increasingly apparent
to you. The more operators that are involved, the more important it is that they al be able to "communicate” with each other.

Keep Track of Your Stack

We've just begun to demonstrate the philosophy behind the stack and postfix notation. Before we continue, however, let's look more
closely at the stack in action and get accustomed to its peculiarities.

Forth's stack is described as a "last-in, first-out" (LIFO). Y ou can see from the earlier illustration why thisis so. The three was pushed onto
the stack first, then the four pushed on top of it. Later the adding machine took the four off first because it was on top. Hence "last-in,
first-out."

In general, the only accessible value at any given time is the top value. Let's use another operation, the . to further demonstrate. Remember
that each . removes one number from the stack and printsit. Four dots, therefore, remove four numbers and print them.

2468. .. .E86420k

The system reads input from left to right and executes each word in turn.
« For input, the rightmost value on the screen will end up on the top of the stack.
« For output, the rightmost value on the screen came from the bottom of the stack.

Let's see what kind of trouble we can get ourselvesinto. Type:
10 20 30 .
(that's four dots) then RETURN. What you get is:

(%)

10 20 30 . . . E 30 20 10 O Stack enpty
Each dot removes one value. The fourth dot found that there was no value left on the stack to send to the terminal, and it told you so.

http://home.iae.nl/users/mhx/sfl/sf1.html (8 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1

Thiserror is called "stack underflow." (Notice that a stack underflow
isnot "ok.")

/

N
\‘ STACK EMPTY!
h

The opposite condition, when the stack completely fills up, is called
"stack overflow." The stack is so deep, however, that this condition
should never occur except when you've done something terribly
wrong.

It's important to keep track of new words "stack effects’; that is, the
sort of numbers aword needs to have on the stack before you
execute it, and the sort of numbersit will leave on the stack
afterwards.

If you maintain alist of your newly created words with their
meanings as you go, you or anyone else can easily understand the
word's operations. In Forth, such alist iscalled a"glossary."

To communicate stack effectsin avisua way, Forth programmers
conventionally use a specia stack notation in their glossaries or
tables of words. We're introducing the stack notation now so that
you'll have it under your belt when you begin the next chapter.
Here isthe basic form:

(before -- after)

The dash separates the things that should be on the stack (before you execute the word) from the things that will be |eft there afterwards.
For example, here's the stack notation for theword .:

(n--)
(The letter "n" stands for "number.") This shows that . expects one number on the stack (before) and leaves no number on the stack (after).

Here's the stack notation for the word +.
+ (n1 n2 -- sum)

When there is more than one n, we number them n1, n2, n3, etc., consecutively. The numbers 1 and 2 do not refer to a position on the
stack. Stack position isindicated by the order in which the items are written; the rightmost item on either side of the arrow is the topmost
item on the stack. For example, in the stack notation of +, the n2 is on top:

+ (nin2--sum)

You're the top

Since you probably have the hang of it by now, welll be leaving out the symbol except when we feel it's needed for clarity. Y ou can
usually tell where to press "return” because the computer's response is aways underlined.

Heresalist of the Forth words you've learned so far, including their stack notations ("n" stands for number; "c" stands for character):

; Creates a new definition with the name xxx, consisting of word or
OO IR 3) words yyy.
CR () Performs a carriage return and line feed at your terminal.
SPACES (n--) Prints the given number of blank spaces at your terminal.
SPACE () Prints one blank space at your terminal.
EMT (c--) Transmits a character to the output device.

http://home.iae.nl/users/mhx/sfl/sf1.html (9 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1

Prints the character string xxx at your terminal. The " character

oS (=) terminates the string.
+ (nln2--sum) Adds.
(n--) Prints a number, followed by one space.

In the next chapter we'll talk about getting the computer to perform some fancier arithmetic.

Review of Terms
|

to generate a dictionary entry in computer memory from source text (the written-out
form of a definition). Distinct from "execute.”

in Forth, alist of words and definitions including both "system"” definitions

Dictionary (pre-defined) and "user" definitions (which you invent). A dictionary residesin
computer memory in compiled form.

to perform. Specifically, to execute aword is to perform the operations specified in the

Compile

SCells compiled definition of the word.
- acharacteristic of a computer language which allows a programmer to add new features
Extensibility . e
or modify existing ones.
Glossary alist of words defined in Forth, showing their stack effects and an explanation of what

they do, which serves as areference for programmers.
Infix notation the method of writing operators between the operands they affect, asin"2 + 5."
the text to be read by the text interpreter. This may be text that you have just typed in at

I 2 REEIEE your terminal, or it may be text that is stored on disk.

Interpret (When_ referri_ng.to Forth's text interpreter) to read_ the input stream, then to find each
word in the dictionary or, failing that, to convert it to a number.

LIFO (last-in, first-out) the type of stack which Forth uses. A can of tennisballsisaLIFO

structure; the last ball you drop in is the one you must remove first.

the method of writing operators after the operands they affect, asin"25 +" for "2 + 5."
Also known as Revers Polish Notation.

in Forth, aregion of memory which is controlled in such away that data can be stored
or removed in alast-in, first-out (LI1FO) fashion.

the error condition that occurs when the entire area of memory allowed for the stack is
completely filled with data.

the error condition that occurs when an operation expects a value on the stack, but there
isno valid data on the stack.

Word in Forth, the name of a definition.

Postfix notation

Stack

Stack overflow

Stack underflow

Problems -- Chapter 1

Note: before you work these problems, remember these simple rules:
Every : needs a ;.

and
Every ." needs a "
1. Defineaword called G FT which, when executed, will type out the name of some gift. For example, you might try:
G FT ." Bookends " ;

Now define aword called @ VER which will print out a person's first name. Finally, define aword called THANKS which includes
the new Forth words G FT and G VER, and prints out a message something like this:

Dear St ephani e,
t hanks for the Bookends. ok

http://home.iae.nl/users/mhx/sfl/sf1.html (10 of 11) [2/24/2005 12:37:15 PM]

Leo Brodie's Starting Forth - Chapter 1
answer

2. Defineaword called TEN. LESS which takes a number on the stack, subtracts ten, and returns the answer on the stack. (Hint: you

can use +.) [answer]

3. After entering the words in Prob. 1, enter a new definition for G VER to print someone else's name, then execute THANKS again.
Can you explain why THANKS still prints out the first giver's name? [answer]

you're being
counted

wac 1%

http://home.iae.nl/users/mhx/sfl/sf1.html (11 of 11) [2/24/2005 12:37:15 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf1/1-1.forth

Code from Starting Forth Chapter 1
ANSi zed by Benjami n Hoyt in 1997

problem 1-1)
A FT ." chocol ate" ;

G VER ot
THANKS CR ." Dear " GVER ." ,"
CR ." Thanks for the " A FT ." . " ;

http://home.iae.nl/users/mhx/sf1/1-1.forth [2/24/2005 12:37:16 PM]

http://home.iae.nl/users/mhx/sf1/1-2.forth

Code from Starting Forth Chapter 1
ANSi zed by Benjami n Hoyt in 1997

problem 1-2)

TENLESS (n -- n-10) -10 + ;
TENLESS (n -- n-10) 10 - ;

http://home.iae.nl/users/mhx/sf1/1-2.forth [2/24/2005 12:37:17 PM]

http://home.iae.nl/users/mhx/sf1/1-3.forth

Code from Starting Forth Chapter 1
ANSi zed by Benjami n Hoyt in 1997

probl em 1-3

Because the old THANKS has the old A VER conpiled into the
dictionary al ready.)

http://home.iae.nl/users/mhx/sf1/1-3.forth [2/24/2005 12:37:17 PM]

Leo Brodie's Starting Forth - Chapter 2

2 How To Get Results

In this chapter, we'll dive right into some specifics that you need to know before we go on. Specifically, we'll introduce some of
the arithmetic instructions besides + and some specia operators for rearranging the order of numbers on the stack, so that you'll
be able to write mathematical equationsin Forth.

Forth Arithmetic -- Calculator Style

Here are the four simplest integer-arithmetic operators in Forth:

+ (nln2--sum) Adds.
(nln2--diff) Subtracts (n1-n2).

* (nln2--prod) Multiplies.

/[(nln2--quot) Divides (n1/n2).

(*)

Unlike calculators, computer terminals don't have special keys for multiplication or division. Instead we use * and /.

In the first chapter, we learned that we can add two numbers by putting them both on the stack, then executing the word +, then
finally executing the word . (dot) to get the result printed at our terminal.

17 5 + . 22 ok
We can use this method with all of Forth's arithmetic operators. In other words, we can use Forth like a calcul ator to get answers,
even without writing a"program.” Try amultiplication problem:

7 8 * . 56 ok

By now we've seen that the operator comes after the numbers. In the case of subtraction and division, though, we must aso
consider the order of numbers ("7 - 4" isnot the sameas "4 - 7").

Just remember thisrule:
To convert to postfix, simply move the operator to the end of the expression:

I nfix Postfix
3+4 34+
500 - 300 500 300 -
6x5 65*
20/ 4 204/
So to do the subtraction problem:
7 - 4 =
simply typein
74 - . 3 ok

For Adventuresome Newcomers Stting at a Terminal

http://home.iae.nl/users/mhx/sf2/sf2.html (1 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2

If you're one of those people who like to fool around and figure things out for themselves
without reading this book, then you're bound to discover a couple of weird things. First off,
as we told you, these operators are integer operators. That not only means that you can't do
calculations with decimal values, like

10.00 2.25 +
it also means that you can only get integer results, asin
21 4/ . 5 ok instead of _5.25 ok

Another thing isthat if you try to multiply:

10000000 1000 *
or some such large numbers, you'll get a crazy answer. So we're telling you up front that
with the operators introduced so far and with . to print the results, you can't have any

numbers that are higher than +2147483647 or lower than -2147483648. Numbers within
thisrange are called "single-length signed numbers.”

Notice, inthelist of Forth words a few pages back, the letter "n," which stands for
"number." Since Forth uses single-length numbers more often than other types of numbers,
the "n" signifies that the number must be single-length. And yes, there are other operators
that extend this range ("double-length" operators, which are indicated by "d").

All of these mysteries will be explained in time, so stay tuned.

The order of numbers stays the same. Let's try a division problem:
20 4 / ._5 ok

Theword / is defined to divide the second number on the stack by the top number.
What do you do if you have more than one operator in an expression, like:
4 + (17 * 12)

you ask? Let's take it step-by-step: the parenthesestell you to first multiply seventeen by twelve, then add four. So in Forth you
would write:

17 12 * 4 + . 208 ok
and here'swhy:

17 and 12 go onto the stack. * multiplies them and returns the result.

Then the four goes onto the stack, on top of 204. + rolls out the adding machine and adds them
together, returning only the result.

Or suppose you want to add five numbers. You can do it in Forth like this:
17 20 + 132 + 3 + 9 + . 181 ok

http://home.iae.nl/users/mhx/sf2/sf2.html (2 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2
Now here's an interesting problem:
(3+9) * (4+6)

To solve it we have to add three to nine first, then add four to six, then finally multiply the two sums.
In Forth, we can write

39+ 46+ * . 120 ok
The picture at the right is showing what happens.

Notice that we very conveniently saved the sum twelve on the stack while we went on about the
business of adding four to six.

Remember that we're not concerned yet with writing definitions. We are ssmply using Forth as a
calculator.

A

If you're like most beginners, you probably would like to try your hand at afew practice problems until you feel more comfortable
with postfix.

Postfix Practice Problems (Quizzie 2-a)

Convert the following infix equations to postfix "calculator style." For example,
ab + c

would become

ab*c+

c(atb)

(3a-b)/4+c

(0.5 ab) / 100

(n+1)/n

X(7x +5)

a k0D

Convert the following postfix expressions to infix:

6. ab-ba+/
7. ab10*/
answer

Forth Arithmetic -- Definition Style

In Chap. 1 we saw that we could define new words in terms of numbers and other
pre-defined words. Let's explore some further possibilities, using some of our
newly-learned math operators.
Let's say we want to convert various measurements to inches. We know that

1 yard = 36 inches

and
1 foot = 12 i nches
s0 we can define these two words;

YARDS>IN 36 * ; ok
FT>I N 12 * : ok

where the names symbolize "yards-to-inches' and "feet-to-inches." Here's what they do:

10 YARDS>I N . 360 ok
2 FT>IN . _24 ok

http://home.iae.nl/users/mhx/sf2/sf2.html (3 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2
If we aways want our result to be in inches, we can define:

YARDS 36 * :; ok
FEET 12 * : ok
| NCHES ; ok

So that we can use the phrase

10 YARDS 2 FEET + 9 I NCHES +

393 ok

Notice that the word | NCHES doesn't do anything except remind the human user what the nineisfor. If we really want to get

fancy, we can add these three definitions:

. 61 ok

YARD YARDS ; _ok
FOOT FEET ; ok
INCH ; _ok
so that the user can enter the singular form of any of the nouns and still get the same resullt:
1 YARD 2 FEET + 1 INCH +
2 YARDS 1 FOOT + ._84 ok

So far we have only defined words whose definitions contain a single math operator. But it's pegfestly. hass ble to put many

operators inside a definition, if that's what you need to do.

Let's say we want aword that computes the sum of five numbers on the

stack. A few pages back we summed five numbers like this:

17 20 + 132 + 3 + 9 + . 181 ok
But we can also enter
17 20 132 3 9 + + + + . 181 ok

We get the same answer, even though we've clustered all the numbers into

In mathematics, the word "argument” refersto
an independent variable of afunction.
Computer linguists have borrowed this term to
refer to numbers being operated on by
operators. They have also borrowed the word
"parameters’ to describe pretty much the same
thing.

one group and al the operators into another group. We can write our definition like this:

5#SUM + + + + ; ok
and execute it like this:

17 20 132 3 9 5#SUM . 181 ok

If we were going to keep 5#SUMfor future use, we could enter it into our ever-growing glossary, along with a note that it
"expects five arguments” on the stack, which it will add together.

Here is another equation to write a definition for:
(a+b) *c
Aswe saw in Quizzie 2-3a, this expression can be written in
postfix as
cab+*

Thus we could write our definition
SOLUTI ON + * : ok

as long as we make sure that we enter the arguments in the
proper order;

c ab SOLUTI ON

Definition Style Practice
Problems (Quizzie 2-b)

Convert the following infix expressionsinto Forth
definitions and show the stack order required by your
definitions. Since thisis Quizzie 2-b, you can name your
definitions 2B1, 2B2, etc.

For Beginners Who Like Word Problems

If ajet
planeflies
at an
average
air speed
of 600
mph and if
it flies
with atail
wind of 25
mph, how
far will it travel in five hours?
If we define

FLI GHT- DI STANCE + *
we could enter
5 600 25 FLI GHT- DI STANCE . 3125 ok

Try it with different values, including head winds (negative
values).

http://home.iae.nl/users/mhx/sf2/sf2.html (4 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2

1. ab+ cwould become: 2B1* +;
which expects this stack order: (¢ b a-- result)

(a-4b)/6+cC
al/ (8b)
0.5ab/ 100
a(2a+ 3)
(a-b)/c
answer

o gk wbd

The Division Operators

Theword / is Forth's simplest division operator. Slash supplies only the quotient; any remainder islost. If you type:
22 4/ ._5 ok

Y ou get only the quotient five, not the remainder two.
If you're thinking of a pocket calculator's per-cent operator, then five is not the full answer.

But / is only one of several division operators supplied by Forth to give you the flexibility to
tell the computer exactly what you want it to do.

For example, let's say you want to solve this problem: "How many dollar billscan | get in
exchange for 22 quarters?' The real answer, of course, is exactly 5, not 5.5. A computerized
money changer, for example, would not know how to give you 5.5 dollar hills.

Here are two more Forth divsion operators:

/ MOD (n1n2--remquot) Divides. Returns the remainder and quotient. \ &

MOD (nln2--rem) Returns the remainder from division. \ g-i'

These operators are both signed, and "truncating.” We'll see what this means in the chapter on computer numbers.

/MQOD gives both the remainder and the quotient; MOD (from "modulo") gives the remainder only. (For /MOD, the stack notation
in the table indicates that the quotient will be on top of the stack, and the remainder below. Remember, the rightmost represents
the topmost.)
Let'stry thefirst one:

22 4 /MD . . 5 2 ok

Here/MOD %BFQ?SIMI%@ iglop.ang| M%p&%e guotient and the remainder on the stack. The first dot prints the quotient
because the quotient was on top.

With what we've learned so far, we can easily define this word:

QUARTERS 4 /MDD . ." ones and "
quarters " ;
So that you can type:
22 QUARTERS

with this result:
22 QUARTERS_ 5 ones and 2 quarters ok

The second word in the table, MOD, |leaves only the remainder.
For examplein:

22 4 MOD . 2 ok
the two is the remainder.

http://home.iae.nl/users/mhx/sf2/sf2.html (5 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2

Stack Maneuvers

If you worked Prob. 6 in the last set, you discovered that the infix
equation

(a- b))/ c
cannot be solved with a definition unless there is some way to
rearrange values on the stack.

WEell, thereisaway: by using a"stack manipulation operator”
caled SWAP.

SWAP

The word
SWAPIis
defined to
switch the -
order of the top &
two stack
items.

Aswiththe ~ Poof!
other stack

manipulation E
operators, you can test SWAP at your terminal in "calculator style"; that is, it

doesn't have to be contained within a definition.

First enter
12. .21 ok
then again, this time with SWAP:
12 SWAP . . 1 2 ok

Thus Prob. 6 can be solved with this phrase:
- SWAP /
with (cab --) on the stack.

Let'sgive a, b, and c these test values:
a=10 b=4 <c¢ =2

then put them on the stack and execute the phrase, like so:
210 4 - SWAP / . _3 ok

Hereisalist of severa stack manipulation operators, including SWAP

SWAP (n1n2--n2nl) Reverses the top two stack items. {1‘_
DUP (n--nn) Duplicates the top stack item. {_ﬁ'_
OVER (nN1n2--nln2nl) Makes a copy of the second item and pushes it on top. (?-*LI
ROT (n1n2n3--n2n3nl) Rotatesthethird item to the top. {?:l

2l

DROP (n--) Discards the top stack item.

7o)

LY

http://home.iae.nl/users/mhx/sf2/sf2.html (6 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2

DUP

The next stack manipulation operator on the list, DUP, simply makes a second copy (duplicate)
of the top stack item.

For example, if we have"a" on the stack, we can compute:

a2
asfollows: [
DUP *
in which the following steps occur:
: Contents
Operation of stack
| a
| DUP aa
I
OVER

Now somebody tells you to evaluate the expression:
a* (a+Db
given the following stack order:
(ab--)
But, you say, I'm going to need a new manipulation operator: | want two copies of the "a," and the "a" is under the "b." Here's the
word you need: OVER. OVER simply makes a copy of the "a" and leapfrogsit over the "b":
(ab--aba)
Now the expression
a* (a+Dhb
can easily be written
OVER + *

Here's what happens:

. Contents
Operation e
| ab
| OVER aba
| + a(b+a)
I GG

When writing equationsin Forth, it's best to "factor
them out" first. For example, if somebody asks you to

evaluate; g B
a2 + ab

in Forth, you'll find it quite complicated (and maybe even impossible) using the words we've introduced so far ... unless you
factor out the expression to read:

a* (a+b
which is the expression we just evaluated so easily.

http://home.iae.nl/users/mhx/sf2/sf2.html (7 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2

ROT

The fourth stack manipulator on the list is ROT (pronounced rote), which is short for "rotate." ROT transforms the top three stack

valuesfrom (abc)to(bca).

For example, if we need to evaluate the expression:
ab - bc

we should first factor out the "b"s:
b * (a- c)

Now if our starting-stack order isthis:
(cba--)

we can use:
RO'I’ - *

in which the following steps will occur:

I hate
jugglers!

Contents
of stack
|c ba

’ Operation

|

| ROT lbac
|

|

- b (a-c)
E Ib* (a-c)

DROP

Thefinal stack manipulation operator on the list is DROP. All it doesis discard the top stack value.
Pretty simple, huh? We'll see some good uses for DROP later on.
A Handy Hint

A Non-destructive Sack Print

Beginners who are just learning to manipul ate numbers on the stack in useful ways very often find
themselves typing a series of dotsto see what's on the stack after their manipulations. The problem
with dots, though, isthat they don't leave the numbers on the stack for future manipulation.

The Forth word .S prints out all the values that happen to be on the stack "non-destructively"; that
is, without removing them. Let's test it, first with nothing on the stack:

.S <0> ok
Asyou can see, in thisversion of .S, we see at least one number. Thisisthe number of items
actually on the stack.
Now let's try with numbers on the stack:

123 .S<3>123 ok

ROT .S <3>2 31 ok

Stack Manipulation and Math Definitions (Quizzie 2-c)

1. Write a phrase which flips three items on the stack, leaving the middle number in the middle; that is,
abec becones ¢ b a
2. Write a phrase that does what OV ER does, without using OVER.

http://home.iae.nl/users/mhx/sf2/sf2.html (8 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2
3. Write adefinition called -ROT, which rotates the top three stack items in the opposite direction from ROT; that is,
abec becomes ¢ a b

Write definitions for the following equations, given the stack effects shown:

4. (n+l) / n (n -- result)
5 x(7x +5) (x -- result)

6.9a2 - ba (ab --
answer

Playing Doubles

result)

The next four stack manipulation operators should look vaguely familiar:

2SWAP (d1d2--d2d1) Reverses the top two pairs of numbers. f, _1_
2DUP (d--dd) Duplicates the top pair of numbers. f, _1_
20VER (dl1d2--d1d2dl) Makesa copy of the second pair of numbers and pushes it on top. f, _*_
2DROP (d--) Discards the top pair of numbers. ': J_

+ (nln2--sum)
(n1n2 -- diff)
(n1n2--prod)

/ (nln2--quot)
/ MOD (nln2--rem quot)
MOD (nln2--rem)
SWAP (nl1n2--n2nl)
DUP (n--nn)

OVER (n1n2--n1ln2nl)
ROT (nln2n3--n2n3nl)
DROP (n--)
2SWAP (d1d2--d2d1)

* 1

2DUP (d--dd)
20VER (d1d2--dld2d1)
2DROP (d--)

Guess who.

The prefix "2" indicates that these stack manipulation operators handle numbersin

*
pai rs.() The letter "d" in the stack effects column stands for "double.” "Double"
has a specia significance that we will discuss when we talk about "n" and "u."

The"2"-manipulators listed above are so straightforward, we won't even bore you
with examples.

One more thing: there are still some stack manipulators we haven't talked about yet,
so don't go crazy by trying too much fancy footwork on the stack.

Here's alist of the Forth words we've covered in this chapter:

Adds.

Subtracts (n1-n2).

Multiplies.

Divides (n1/n2).

Divides. Returns the remainder and quotient.

Returns the remainder from division.

Reverses the top two stack items.

Duplicates the top stack item.

Makes a copy of the second item and pushes it on top.
Rotates the third item to the top.

Discards the top stack item.

Reverses the top two pairs of numbers.

Duplicates the top pair of numbers.

Makes a copy of the second pair of numbers and pushes it on top.
Discards the top pair of numbers.

Review of Terms

http://home.iae.nl/users/mhx/sf2/sf2.html (9 of 10) [2/24/2005 12:37:25 PM]

Leo Brodie's Starting Forth - Chapter 2

integers which encompass a range of over -18,446,744,073,709,551,615 to
+18,446,744,073,709,551,615 (and which welll introduce officially in Chap. 7).
integers which fall within the range of -2 billion to +2 billion: the only numbers
Single-length numbers which are valid as the arguments or results of any of the operators we've
discussed so far.

Double-length numbers

Problems -- Chapter 2

1. What's the difference between DUP DUP and 2DUP? [answer]
2. Write aphrase which will reverse the order of the top four items on the stack; that is,
(1234--4321)
answer
3. Write adefinition called 3DUP which will duplicate the top three numbers on the stack; for example,
(123--123123)
answer

Write definitions for the following infix equations, given the stack effects shown:
4. 2+ab+c(cab--result) [answer]

5. (arb) / (at+b) (ab -- result) [answer]

6. Write a set of words to compute prison sentences for hardened criminals such that the judge can enter:

CONVI CTED- OF ARSON HOM Cl DE TAX- EVASI ON ok
W LL- SERVE 35 years ok

or any series of crime beginning with the word CONVI CTED- OF and ending with W LL- SERVE. Use these sentences

HOM Cl DE 20 years
ARSON 10 years
BOOKMAKI NG 2 years
TAX- EVASI ON 5 years

answer

7. You'rethe inventory programmer at Maria's Egg Ranch. Define aword called EGG. CARTONS which expects on the stack
the total number of eggs laid by the chickens today and prints out the number of cartons that can be filled with a dozen
each, aswell as the number of left-over eggs. [answer]

you're being
counted

WiC 32y

http://home.iae.nl/users/mhx/sf2/sf2.html (10 of 10) [2/24/2005 12:37:25 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf2/quizzie 2-a.forth

L
\ quizzie 2-a.forth-------c-ocmm oo
L
(Quizzie 2-a)
(1. ab+c* or

cab+*

2. 3 a*b-4/ c+

3. ab 100 / 2/ or
ab * 200 /
4 n 1+ n/

6. a- b
b+ a

7. a
10b)

http://home.iae.nl/users/mhx/sf2/quizzie 2-a.forth [2/24/2005 12:37:26 PM]

http://home.iae.nl/users/mhx/sf2/quizzie 2-b.forth

qui zzie 2-b.forth -----om o e

Qui zzie 2-b)

2. . 2B2 4* -6/ +; (cab--result)

3. : 2B3 8 * [/ ; (ab- result)

4. . 2B4 * 200 / ; (ab- result)

5. : 2B5 2* 3 + * ; (aa-result)

6. |If you said this one's inpossible, you're right!-- at |east wthout
the stack mani pul ati on operators which we'll introduce very shortly.

http://home.iae.nl/users/mhx/sf2/quizzie 2-b.forth [2/24/2005 12:37:27 PM]

—

http://home.iae.nl/users/mhx/sf2/quizzie 2-c.forth

Qui zzie 2-c)
1 SWAP ROT
2. SWAP DUP ROT SWAP
3. : -ROT ROT ROT ; (probably your Forth has it already.)
4. . 2C4 DUP 1 + SWAP / ; or
2C4 DUP 1+ SWAP / ;
5. 2C5 DUP 7 * 5 + * ;
6. 2C6 OVER 9 * SWAP - *

http://home.iae.nl/users/mhx/sf2/quizzie 2-c.forth [2/24/2005 12:37:27 PM]

http://home.iae.nl/users/mhx/sf2/2-1.forth

Code from Starting Forth ter 2
ANSi zed by Benjami n Hoyt in 1997

problem 2-1

DUP DUP duplicates the top stack itemtw ce whereas 2DUP
duplicates the two top stack itens once.)

http://home.iae.nl/users/mhx/sf2/2-1.forth [2/24/2005 12:37:28 PM]

http://home.iae.nl/users/mhx/sf2/2-2.forth

Code from Starting Forth ter 2
ANSi zed by Benjami n Hoyt in 1997

problem 2-2)
abcd--dcba) 1234 SWP 2SWAP SWAP

http://home.iae.nl/users/mhx/sf2/2-2.forth [2/24/2005 12:37:28 PM]

http://home.iae.nl/users/mhx/sf2/2-3.forth

Code from Starting Forth ter 2
ANSi zed by Benjami n Hoyt in 1997

problem 2-3)
3DUP ((abc--abcabc) DUP 20VER ROT ;

http://home.iae.nl/users/mhx/sf2/2-3.forth [2/24/2005 12:37:29 PM]

http://home.iae.nl/users/mhx/sf2/2-4.forth

Code from Starting Forth ter 2
ANSi zed by Benjami n Hoyt in 1997

problem 2-4)
2-4 (cab-- a**2+ab+tc) OVER + * + ;

http://home.iae.nl/users/mhx/sf2/2-4.forth [2/24/2005 12:37:29 PM]

http://home.iae.nl/users/mhx/sf2/2-5.forth

Code from Starting Forth ter 2
ANSi zed by Benjami n Hoyt in 1997

problem 2-5)
-ROT (abc--cab) ROTI ROT,;
2-5 (ab--Ja-b]l/[a+b]) 2DUP - -ROT + [;

http://home.iae.nl/users/mhx/sf2/2-5.forth [2/24/2005 12:37:30 PM]

http://home.iae.nl/users/mhx/sf2/2-6.forth

e
\ Code from Starting Forth ter 2
\ ANSi zed by Benjam n Hoyt in 1997

(problem 2-6)

CONVICTED-OF (-- no-sentence) O ;

ARSON (sentence -- sentence+l10) 10 + ;
HOM ClI DE (sentence -- sentence+20) 20 + ;
BOOKMAKI NG (sentence -- sentence+2) 2 + ;
TAX-EVASION (sentence -- sentence+5) 5 + ;
W LL- SERVE (sentence --) " years " ;

http://home.iae.nl/users/mhx/sf2/2-6.forth [2/24/2005 12:37:31 PM]

http://home.iae.nl/users/mhx/sf2/2-7 forth

Code from Starting Forth ter 2
ANSi zed by Benjami n Hoyt in 1997

problem 2-7)

EGG CARTONS (total -eggs --)
12 /MDD . ." carton(s) and " . ." leftover(s) " ;

http://home.iae.nl/users/mhx/sf2/2-7 forth [2/24/2005 12:37:31 PM]

Leo Brodie's Starting Forth - Chapter 3

3 The Editor (And Staff)

Up till now you've been compiling new definitions into the dictionary by typing them at your terminal. This
chapter introduces an alternate method, using disk storage.

L et's begin with some observations that specifically concern the dictionary.

Another Look at the Dictionary

If you've been experimenting with areal computer, you may have discovered some things we haven't mentioned
yet. In any case, it's time to mention them.

Discovery One: Y ou can define the same word more than once in different
ways--only the most recent definition will be executed.

For example, if you have entered:
GREET ." Hello, | speak Forth. " ;_ ok
then you should get this resullt:
GREET Hello, | speak Forth. ok

And if you redefine:
GREET ." H there! " ; ok
you get the most recent definition:
GREET_Hi there! ok

Has the first GREET been erased? No, it's still there, but the most recent GREET is executed because of the search
order. The text interpreter always starts at the "back of the dictionary” where the most recent entry is. The
definition he finds first is the one you defined last. Thisis the one he showsto EXECUTE.

We can prove that the old GREET is till there. Try this:
FORGET GREET_ok

and
GREET Hello, | speak Forth. ok

(%)

(the old GREET again!)

FORGET YOU EVER
)~
SAW ME!

B

‘“'-._____-

http://home.iae.nl/users/mhx/sf3/sf3.html (1 of 5) [2/24/2005 12:37:35 PM]

Leo Brodie's Starting Forth - Chapter 3

The word FORGET looks up a given word in the dictionary and, in effect, removes it from the dictionary along
with anything you may have defined since that word. FORGET, like the interpreter, searches starting from the
back; he only removes the most recently defined versions of the word (along with any words that follow). So now
when you type GREET at the terminal, the interpreter finds the original GREET.

FORGET is agood word to know; he helps you to weed out your dictionary so it won't overflow. (The dictionary
takes up memory space, so as with any other use of memory, you want to conserveit.)

Some Forths do not have FORGET. In that case you need to plan the forgetting in advance, e.g.:
MARKER - wor k

defines the null definition - wor k to mark the current system state for you. When you execute - wor k at some
later time, the system state is restored to that in effect when - wor k was defined. In particular, all words defined
after the marker word - wor k are completely removed from the dictionary.

Discovery Two: When you enter definitions from the terminal (as you have

(*)

been doing), your source text is not saved.

Only the compiled form of your definition is saved in the dictionary. So what if you want to make a minor change
to aword aready defined? Thisiswhere a"text editor" comesin. With this editor, you can save your source text
and modify it if you want to. In this day and age we can assume that everyone has access to a text editor. The
documentation of your Forth system should discuss the procedures to easily use your favorite text editor from
within the Forth environment. (On a modern OS, double-click the file you want to edit. After finishing your
editing business, type INCLUDE on the Forth commandline. Add at |east one trailing space, then drag your filein
the Forth window and drop it on the commandline. Type E)

A text editor stores your source text on disk. So we'd better introduce the disk and the way the Forth system uses
it.

How Forth Uses the Disk

All Forth systems use disk memory. Even though disk memory is not absolutely necessary for a Forth system, it's
difficult to imagine Forth without it.

To understand what disk memory does, compare it with computer memory (RAM). The difference is analogous to
the difference between afiling cabinet and arolling card-index.

So far you've been using computer memory, which islike the card index. The computer can access this memory
almost instantaneously, so programs that are stored in RAM can run very fast. Unfortunately, this kind of
memory is sometimes very limited (e.g. in embedded controllers) and relatively expensive.

On the other hand, the disk is called a"bulk memory" device, because, like afiling cabinet, it can store alot of
information at a much cheaper price per unit of information than the memory inside the computer.

Both kinds of memory can be written to and read from.

The compiler compiles all dictionary entries into computer memory so that the definitions will be quickly
accessible. The perfect place to store source text, however, is on the disk, which iswhat Forth does. Y ou can

http://home.iae.nl/users/mhx/sf3/sf3.html (2 of 5) [2/24/2005 12:37:35 PM]

Leo Brodie's Starting Forth - Chapter 3

either send source text directly from the keyboard to the interpreter (as you have been doing), or you can save
your source text on the disk and then later read it off the disk and send it to the text interpreter.

Disk memory is divided into units
called "blocks." Each block holds
1,024 characters of source text or
binary data, traditionally
organized as 16 lines of 64
characters. The ANS Forth
standard does not specify how
many blocks there are. The
documentation of your Forth
system should tell you this.

With current Forths, disk memory
residesin OSfiles. There are
ways to attach specific OSfilesto
the "Forth disk." Dueto the
special 16 by 64 format of Forth
blocks, OS utilities consider them
as binary data and cannot
generally print, list, filter or edit
them. Forth systems have
standardized facilitiesto handle
some of these tasks by themselves.

Assuming you are using iForth, then the following should instruct disk memory to come from somefile:
USE bl ocks. f b_ok

To list ablock, simply type the block-number and the word LIST, asin:

1 LIST

0

1 (Large letter F VHX 21:29 07/01/89)
2

3 . STAR [CHAR] * EMT ;

4 : STARS 0 DO STAR LOOP ;

5: MRAN CR 30 SPACES ;

6 : BLIP MARG N STAR ;

7 . BAR MARG N 5 STARS ;

8 : F BAR BLIP BAR BLIP BLIP CR ;
9

10

11

12

13

14

15

ok

The above is what a block looks like when it's listed on your terminal.

http://home.iae.nl/users/mhx/sf3/sf3.html (3 of 5) [2/24/2005 12:37:35 PM]

http://home.iae.nl/users/mhx/sf3/blocks.fb

Leo Brodie's Starting Forth - Chapter 3

To give you a better idea of how all of this could be used, we'll assume that block 1 contains the definitions
shown above. Except for line 1, everything looks familiar: these are the definitions you used to print alarge letter
"F* at your terminal.

Now if you were to type:

1 LOAD
F

you would send block 1 to the input stream and then on to the text interpreter. The text interpreter does not care
where his text comes from. Recognizing the colons, he will have all the definitions compiled, and then will
execute the new word F.

Now for the unfinished business: line 1. The words inside the parentheses are for humans 0¢|}1{é}@é@@ either
compiled nor executed. The word ((left parenthesis) tells the text interpreter to skip all the following text up to
the terminating right parenthesis. Because (isaword, it must be set off with a =k
space. The closing parenthesisis not aword, it is simply a character that is
looked for by (, called a delimiter. (Recall that the delimiter for ." isthe closing
quote mark.)

To summarize, the three ANS Forth commands we've learned so far that concern
disk blocks are:

LIST (n-) Listsadisk block. (2l
LOAD (n--) Loadsadisk block (compiles or executes). "f,;:?'* |

Causes the string xxx to be ignored by the text (
interpreter. The character) isthe delimiter. %

(xxx) (=)

Block-buffer Basics

We have discussed blocks mainly because of historical reasons. Blocks are hardly ever used for source text
storage any more. The preferred way to handle source isin standard text files, using the word INCLUDE to |oad
them:

| NCLUDE bl ocks. forth_ok
The main advantage isthat bl ocks. f or t h can be edited and managed with standard text file utilities.

However, now we're at it, we'll mention afew other words to access and modify blocks on disk.

The basic word that brings a block in from the disk, after first finding an available buffer and storing its contents
on disk if necessary, is BLOCK. For instance, if you say

1 BLOCK

the system will copy block 1 of the currently open file into one of the system buffers. BLOCK also leaves on the
stack the address of the beginning of the buffer (1024 bytes, remember) that it used. The contents of this buffer
are guaranteed to stay valid until you execute a word from the set of procedures with "multitasking impact,” like
EMIT or TYPE. If you at any time modify the buffer contents and then execute the word UPDATE, Forth will
remember to first write the block back to disk when it needs to reuse the buffer. If, for some reason, you execute
UPDATE and then decide that you don't want to have the blocks rewritten after al, use EMPTY -BUFFERS to
invalidate them. This works because Forth does not immediately write the disk after you use UPDATE. To force

http://home.iae.nl/users/mhx/sf3/sf3.html (4 of 5) [2/24/2005 12:37:35 PM]

Leo Brodie's Starting Forth - Chapter 3

writing out the buffers right now, use the word FLUSH.

Here'salist of the Forth words we've covered in this chapter:

USE XXX (--) Designate OS text file xxx as the "Forth disk."
LI ST (n--) Listsadisk block.
LOAD (n--) Loads adisk block (compiles or executes).
(XXX) () C_ausm the_ st_ring XXX to be ignored by the text interpreter. The character
) isthe delimiter.
Marks the most recently referenced block as modified. The block will
UPDATE (--) later be automatically transferred to mass storage if its buffer is needed

to store adifferent block or if FLUSH is executed.
Marks all block buffers as empty without necessarily affecting their
actual contents. Updated blocks are not written to mass storage.
L eaves the address of thefirst bytein block u. If the block is not already
in memory, it is transferred from mass storage into whichever memory
BLOCK (u-- addr) buffer has been least recently accessed. If the block occupying that
buffer has been updated (i.e., modified), it is rewritten onto mass storage
before block u isread into the buffer.
| NCLUDE xxx (--) Load the text file xxx (compiles or executes).
FORGET xXxX (--) Forgets all definitions back to and including xxx.
Creates aword xxx which, when executed, restores the dictionary to the
MARKER XXX (--) state it had just prior to the definition of xxx. In particular, remove xxx
and all subsequent word definitions.

EMPTY- BUFFERS (--)

Review of Terms
1 ___|
Block in Forth, adivision of disk memory containing up to 1024 characters of source text.
Buffer atemporary storage areafor data.
adefinition that does nothing, written in the form:

. NAME ;
Null definition _ _ o o o
that is, aname only will be compiled into the dictionary. A null definition servesas a

"bookmark" in the dictionary, for FORGET to find.
alocation in memory where a number can be stored (or changed) as areference to

Pointer .
something else.
ST e in Forth, the written-out form of a definition or definitionsin English-like words and
punctuation, as opposed to the compiled form that is entered into the dictionary.
|
you're being
counted

http://home.iae.nl/users/mhx/sf3/sf3.html (5 of 5) [2/24/2005 12:37:35 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf3/blocks.forth

\ Large letter F

STAR [CHAR] * EMT ;

STARS 0 DO STAR LOOP ;

MARG N CR 30 SPACES ;

BLIP MARG N STAR ;

BAR MARG N 5 STARS ;

F BAR BLIP BAR BLIP BLIP CR ;

http://home.iae.nl/users/mhx/sf3/blocks.forth [2/24/2005 12:37:36 PM]

Leo Brodie's Starting Forth - Chapter 4

4 Decisions, Decisions,

In this chapter we'll learn how to program the computer to make "decisions.” This isthe moment when you turn your computer into
something more than an ordinary calculator.

The Conditional Phrase

Let's see how to write a simple decision-making statement in Forth. Imagine we are programming a mechanical egg-carton packer.
Some sort of mechanical device has counted the eggs on the conveyor belt, and now we have the number of eggs on the stack. The
Forth phrase:

12 = IF FILL-CARTON THEN

tests whether the number on the stack is equal to 12, and if it is, the word FI LL- CARTON is executed. If it's not, execution moves
right along to the words that follow THEN.

The word = takes two values of the stack and compares them to seeif they are equal.

FILL-CARTON ‘
IF THEN

If the condition is true, |F allows the flow of execution to continue with the next word in the definition.

&

FILL-CARTOMN THEN

But if the condition isfalse, IF causes the flow of execution to skip to THEN, from which point execution will proceed.

Let'stry it. Define this example word:
: ?FULL 12 = IF ." It's full " THEN ; _ok
11 ?FULL_ok
12 ?FULL_It's full ok

Notice: an IF...THEN statement must be contained within adefinition. Y ou can't just enter these wordsin "calculator style."

Don't be misled by the traditional English meanings of the Forth words IF and THEN. The words that follow |F are executed if the

http://home.iae.nl/users/mhx/sfd/sf4.html (1 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4

condition is true. The words that follow THEN are always executed, as though you were telling the computer, "After you make the
choice, then continue with the rest of the definition.” (In this example, the only word after THEN is ;, which ends the definition.)

Let'slook at another example. This definition checks whether the temperature of alaboratory boiler istoo hot. It expects to find the
temperature on the stack:

?TOO-HOT 220 > IF ." Danger -- reduce heat " THEN ;

If the temperature on the stack is greater than 220, the danger message will be printed at the terminal. Y ou can execute this one
yourself, by entering the definition, then typing in avalue just before the word.

290 ?TOO- HOT_Danger -- reduce heat ok
130 ?TOO- HOT ok

Remember that every |F needs a THEN to come home to. Both words must be in the same definition.

Hereisapartia list of comparison operators that you can use before an IF...THEN statement:

— (1
= A Gl
N &
o= | (2
0< ';__H
0> .-;‘4‘

The words < and > expect the same stack order as the arithmetic operators, that is:

I nfix Postfix
2<10 isequivaentto210<
17 >-39isequivalent to 17 -39 >

The words 0=, 0< and 0> expect only one value on the stack. The value is compared with zero.

Another word, INVERT, doesn't test any value at al; it smply reverses whatever condition has just been tested. For example, the
phrase:

= INVERT IF ...
will execute the words after IF, if the two numbers on the stack are not equal.

The Alternative Phrase

Forth allows you to provide an aternative phrase in an IF statement, with the word EL SE.

The following example is a definition which tests whether a given number is avalid day of the month:
?DAY 32 < IF ." Looks good " ELSE ." no way " THEN ;

http://home.iae.nl/users/mhx/sf4/sf4.html (2 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4

If the number on the stack is less than thirty-two, the message "L ooks good” will be
printed. Otherwise, "no way" will be printed.

LOOKS

Imagine that | F pulls arailroad-track switch, depending on the outcome of the test. GOOD
Execution then takes one of two possible routes, but either way, the tracks rejoin at
the word THEN. NOWAY

By the way, in computer terminology, this whole business of rerouting the path of

*
execution is called "branchi ng."() Q
o

Here's amore useful example. Y ou know that dividing any number by zerois)
impossible, so if you try it on a computer, you'll get an incorrect answer. We might IR
define aword which only performs division if the denominator is not zero. The r”f 4
following definition expects stack itemsin this order:) -
(nunerator denom nator --) S ,f
: | CHECK /
DUP O=IF ." invalid " DROP
ELSE /

(%)

THEN ;

Notice that we first have to DUP the denominator because the phrase
0= IF
will destroy it in the process.

Also notice that the word DROP removes the denominator if division won't be
performed, so that whether we divide or not, the stack effect will be the same.

Nested IF...THEN Statements

It's possible to put an IF...THEN (or IF...ELSE...THEN) statement inside another IF...THEN statement. In fact, you can get as
complicated as you like, so long as every |F has one THEN.

Consider the following definition, which determines the size of commercia eggs (extralarge, large, etc.) given their weight in ounces
per dozen:

EGGSI ZE DUP 18 <IF ." reject " ELSE
DUP 21 <IF ." small " ELSE
DUP 24 <IF ." medium" ELSE
DUP 27 <IF ." large " ELSE
DUP 30 <IF ." extra large " ELSE
" error "

THEN THEN THEN THEN THEN DROCP ;

Once EGGSI ZE has been entered, here are some results you'd get:

23 EGGSI ZE _nedi um ok
29 EGGSI ZE extra | arge ok
40 EGGS| ZE error ok

We'd like to point out a few things about EGGSI ZE:

The entire definition isa series of "nested” IF...THEN statements. The word "nested" does not refer to the fact that we're dealing with
eggs, but to the fact that the statements nest inside one another, like a set of mixing bowls.

The five THENS at the bottom close off the five IFsin reverse order, that is:

http://home.iae.nl/users/mhx/sf4/sf4.html (3 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4

IF
IF
IF
IF
IF
THEN THEN THEN THEN THEN

Also notice that a DROP is necessary at the end of the definition to get rid of the original value.

<

Finally, notice that the definition is visually organized to be read easily by human beings. Most Forth programmers would rather
waste alittle space than let things get any more confused than they have to be.

A Closer Look at IF

How does the comparison operator (=, <, >, or whichever) let IF know
whether the condition istrue or false? By simply leaving TRUE or FALSE
on the stack. A TRUE (all bits high) means that the condition istrue; a
FALSE (al bitslow) means that the condition is false.

In computer jargon, when one piece of program leaves avalue as asignal
for another piece of program, that valueis called a"flag."

Try entering the following phrases at the terminal, letting . show you what's
on the stack as aflag.

54>. -1 ok
54 <._0ok

(It's ok to use comparison operators directly at your terminal like this, but
remember that an IF... THEN statement must be wholly contained within a
definition because it involves branching.)

IF will take a TRUE as aflag that means true and a FAL SE as a flag that
means false. Now let's take a closer look at INVERT, which reverses the flag on the stack.

FALSE I NVERT . -1 ok
TRUE | NVERT . 0 ok
Now we'll let you in on alittle secret: IF will take any non-zero value to mean true.

To proveit, try entering this test:
TEST IF ." non-" THEN ." zero " ;

Even though there is no comparison operator in the above definition, you'll still get
0O TEST zero ok

1 TEST non-zero ok
-400 TEST non-zero ok

So what, you ask? Well, the fact that an arithmetic zero isidentical to aflag that means "false" leads to some interesting results.

For one thing, if al you want to test is whether a number is zero, you don't need a comparison operator at all. For example, adightly
simpler version of / CHECK, which we saw earlier, could be

/CHECK DUP IF / ELSE ." invalid " THEN DROP ;

Here's another interesting result. Say you want to test whether a number is an even multiple of ten, such as 10, 20, 30, 40 etc. You
know that the phrase

http://home.iae.nl/users/mhx/sf4/sf4.html (4 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4

10 MOD
divides by ten and returns the remainder only. An even multiple of ten would produce a zero remainder, so the phrase
10 MOD 0=
givesthe appropriate "true" or "false" flag.
Still another interesting result is that you can use - (minus) as a comparison operator which tests whether two values are "not equal."

When you subtract two equal numbers, you get zero (false); when you subtract two unequal numbers, you get a non-zero value.
However, now we must talk a bit about "well-formed flags."

If you think about it, both 0= and INVERT do almost the same thing. However, 0= changes the number 0 to the number -1 and any
non-zero number to 0, while INVERT changes all zero bitsin a number to one bits and the one bits in that number to zero bits. Only
when the number is a"well-formed flag", i.e., either 0 or -1, the result of 0= and INVERT isthe same. All comparison operators
return well-formed flags, fit for either 0= or INVERT. However, when you use - to compare two numbers, as we did above, the flag
will not be well-formed when the two numbers differ in value, and only 0= can be used to safely reverse the meaning of the
comparison.

A final result is described in the next section.

A Little Logic

It's possible to take severa flags from various tests and combine them into a single flag for one IF statement. Y ou might combine
them as an "either/or" decision, in which you make two comparison tests. If either or both of the tests are true, then the computer will
execute something. If neither istrue, it won't.

Here's arather simple-minded example, just to show you what we mean. Say you want to print the name "ARTICHOKE" if an input
number is either negative or a multiple of ten.
How do you do thisin Forth? Consider the phrase:
DUP 0< SWAP 10 MOD 0= +
Here's what happens when the input number is say, 30:

Operator Contents of stack Operation
30
DUP 30 30 Duplicatesit so we can test it twice.
0< 30 0 Isit negative? No (zero).
SVWAP 0 30 Swaps the flag with the number.
10 MOD 0= 0 -1 Isit evenly divisible by 10? Y es (true).
F -1 Add the flags.

Adds the flags? What happens when you add flags? Here are four possibilities:

http://home.iae.nl/users/mhx/sf4/sf4.html (5 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4

First flag

Second flag
4

Result

Lo and behold, the result flag is true if either or both conditions are true. In this example, the result is -1, which means "true." If the
input number had been -30, then both condition would have been true and the sum would have been minus two. Minustwo is, of
course, non-zero. So asfar as |F is concerned, -2 isastrue as -1.

Our simple-minded definition, then would be:

VEGETABLE DUP 0< SWAP 10 MOD 0= +
IF ." ARTICHOKE " THEN ;

Hereis an improved version of a previous example called ?DAY.

The old ?DAY only caught entries over thirty-one. But negative numbers shouldn't be allowed either. How about this:

?DAY DUP 1 < SWAP 31 > +
IF." No way " ELSE ." Looks good " THEN ;

The above two examples will always work because any "true" flags will always be exactly "-1." In some cases, however, a flag may
be any non-zero value, not just "-1," in which case it's dangerous to add them with +. For example:

1-1+. 00k
gives us amathematically correct answer, but not the answer we want if 1 and -1 are flags.

For this reason, Forth supplies aword called OR, which will return the correct flag even in case of 1 and -1. An "or decision” isthe
computer term for the kind of flag we've been discussing. For example, if either the front door or the back door is open (or both), flies
will comein.

Another kind of decision iscalled an "and" decision. In an "and" decision, both conditions must be true for the result to be true. For
example, the front door and the back door must both be open for a breeze to come through. If there are three or more conditions, they
must all be true.

For the Curious Newcomer

The use of words like "or" and "and" to structure part of an applicationiscalled "logic." A form of notation for logical statements was
developed in the nineteenth century by George Boole; it is now called Boolean algebra. Thus the term "a Boolean flag" (or even just "a
Boolean") simply refersto aflag that will be used in alogical statement.

How can we do this"and decision” in Forth? By using the handy word AND. Here's what AND would do with the four possible
combinations of flags we saw earlier:

http://home.iae.nl/users/mhx/sf4/sf4.html (6 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4

First flag

Second flag
AND

Result O J. 0. v

In other words, only the combination "-1 -1 AND" produces aresult of "true." Let's say we're looking for a cardboard box that's big
enough to fit adisk drive which measures:

hei ght 6"

width 19"
| ength 22"

The height, width, and length requirements all must be satisfied for the box to be big enough. If we have the dimensions on the stack,
then we can define:

BOXTEST (length wi dth height --)
6 > ROT 22 > ROT 19 > AND AND
IF ." Big enough " THEN ;

Notice that we've put acomment inside the definition, to remind us of stack effects. Thisis particularly wise when the stack order is
potentially confusing or hard to remember.

Y ou can test BOXTEST with the following phrase:
23 20 7 BOXTEST_Bi g enough ok

As your applications become more sophisticated, you will be able to write statements in Forth that 1ook like postfix English and are
very easy to read. Just define the individual words within the definition to check some condition somewhere, then leave aflag on the
stack.

Anexampleis:

SNAPSHOT LI GHT? FILM? AND | F PHOTOGRAPH THEN ;
which checks that there is available light and that there is film in the camera before taking the picture. Another example, which might
be used in a computer-dating application, is:

MATCH

HUMOROUS SENSI Tl VE AND

ART. LOVI NG MUSI C. LOVI NG OR AND

SMOKI NG 0= AND

IF ." | have soneone you should neet " THEN ;

where words like HUMOROUS and SENSI Tl VE have been defined to check arecord in adisk file that contains information on other
applicants of the appropriate sex.

Two Words with Built-in IF

?DUP

The word ?DUP duplicates the top stack value only if it is non-zero. This can eliminate a few surplus words. For example, the
definition:
/CHECK DUP IF / ELSE DROP THEN ;

http://home.iae.nl/users/mhx/sf4/sf4.html (7 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4

can be shortened to
/[CHECK ?DUP IF [/ THEN ;

ABORT"

It may happen that somewhere in acomplex application an error might occur (such as adivision by zero), way down in one of the
low-level words. When this happens you don't just want the computer to keep on going, and you also don't want it to leave anything
on the stack.

If you think such an error might occur, you can use the word ABORT". ABORT" expects aflag on the stack: a"true" flag tellsit to
"abort," which in turn clears the stacks and returns execution to the terminal, waiting for someone to type something. ABORT" also
prints the name of the last interpreted word, as well as whatever message you want.

Let'sillustrate. We hope you're not sick of / CHECK by now, because hereis yet another version:
/ CHECK DUP 0= ABORT" zero denom nator " [/ ;

Inthisversion, if the denominator is zero, any numbers that happen to be on the stack will be dropped and the terminal will show:

8 0 / CHECK
Error -2
zero denom nator ?

Just as an experiment, try putting / CHECK inside another definition:
ENVELOPE /CHECK ." The answer is " . ;

and try

8 4 ENVELOPE The answer is 2 ok
8 0 ENVELOCPE

Error -2

zero denomi nator ?

The point is that when / CHECK aborts, the rest of ENVELOPE is skipped.

A useful word to use in conjunction with ABORT" is ?STACK, which checks for stack underflow and returns atrue flag if it findsit.
Thus the phrase:

?STACK ABORT" stack enpty "
abortsif the stack has underflowed.

Forth uses the identical phrase, in fact. But it waits until al your definitions have stopped executing before it performs the ?STACK
test, because checking continuously throughout execution would needlessly slow down the computer. You're free to insert a ?STACK
ABORT" phrase at any critical or not-yet-tested portion of your application.

For Computer Philosophers

Forth provides certain error checking automatically. But because the Forth operating system is so easy to modify, users can readily control
the amount of error checking their system will do. This flexibility lets users make their own tradeoffs between convenience and execution
Speed.

Here'salist of the Forth words we've covered in this chapter:

I F XXX .] .] .
ELSE yyy | F: (f-) If f |st_rue (npn—zero) executes xxx; otherwise execut(_es vy, continues
THEN 277 execution with zzz regardless. The phrase ELSE yyy is optional .
= (nln2--f) Returnstrueif nl and n2 are equal.
- (n1n2 -- n-diff) Returns true (i.e., the non-zero difference) if n1 and n2 are not equal.
< (n1n2--f) Returnstrueif nlislessthan n2.
> (nln2--f) Returnstrueif nlis greater than n2.
= (n--f) Returnstrueif niszero (i.e., reverse the truth value).
0< (n--f) Returnstrueif nis negative.
0> (n--f) Returnstrueif nis positive.
AND (nln2--and) Returnsthelogica AND.
OR (nln2--or) Returnsthelogica OR.

http://home.iae.nl/users/mhx/sf4/sf4.html (8 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4

?DUP Eg 8;‘) ' Duplicatesonly if n is non-zero.
If the flag is true, types out an error message, followed by the text.
ABORT" xx" (f--) Also clears the stacks and returns control to the terminal. If false, takes
no action.
?STACK (--f) Returns true if a stack underflow condition has occurred.
Review of Terms

as ageneral computer term, to abruptly cease execution if a condition occurs

Abort which the program is not designed to handle, in order to avoid producing nonsense
or possibly doing damage.
" wo two conditions that are combined such that if both of them are true, theresult is
And" decision true
breaking the normally straightforward flow of execution, depending on conditions
Branching in effect at the time of execution. Branching allows the computer to respond

differently to different conditions.

in general, acommand that compares one value with another (for example,
determines whether one is greater than the other), and sets a flag accordingly,
which normally will be checked by a conditional operator. In Forth, a comparison
operator leaves the flag on the stack.

asageneral computer term, a value stored in memory which serves asasignal as
to whether some known condition is true or false. Once the "flag is set," any
number of routines in various parts of a program may check (or reset) the flag, as
necessary.

in computer terminology, the system of representing conditions in the form of
"logical variables," which can be either true or false, and combining these
variables using such "logical operators' as"and," "or," and "not," to form
statements which may be true or false.

Nesting placing a branching structure within an outer branching structure.

two conditions that are combined such that if either one of them is true, the result
istrue.

Comparison operator

Flag

Logic

"Or" decision

Problems -- Chapter 4

1. What will the phrase

0= 0=
leave on the stack when the argument is
-1?
0?
200?
answer

2. Explain what an artichoke has to do with any of this.

3. Define aword called CARD which, given a person's age on the stack, prints out either of these two messages (depending on the
relevant lawsin your area):

ALCCHOLI C BEVERAGES PERM TTED or
UNDER AGE

http://home.iae.nl/users/mhx/sf4/sf4.html (9 of 10) [2/24/2005 12:37:42 PM]

Leo Brodie's Starting Forth - Chapter 4
answer

4. Defineaword called SI GN. TEST that will test a number on the stack and print out one of three messages:

PCOSI Tl VE or
ZERO or
NEGATI VE

answer

5. In Chap. 1, we defined aword called STARS in such away that it always prints at least one star, even if you say
0 STARS * ok
Using the word STARS, define a new version of STARS that corrects this problem. [answer]

6. Write the definition for the word WITHIN which expects three arguments:

(nlo-limt hi-limt --)
and leaves a"true” flag only if "n" iswithin the range
lowlimt <= n < hi-limt

answer

7. Here's anumber-guessing game (which you may enjoy writing more than anyone will enjoy playing). First you secretly enter a
number onto the stack (you can hide your number after entering it by executing the word PAGE, which clears the terminal
screen). Then you ask another player to enter a guess followed by the word GUESS, asin

100 GUESS

The computer will either respond "TOO HIGH," "TOO LOW," or "CORRECT!" Write the definition of GUESS, making sure
that the answer-number will stay on the stack through repeated guessing until the correct answer is guessed, after which the
stack should be clear. [answer]

8. Using nested tests and IF..EL SE...THEN statements, write a definition called SPELLER which will spell out a number on the
stack, from -4 to 4. If the number is outside thisrange, it will print the message "OUT OF RANGE." For example:
2 SPELLER two ok
-4 SPELLER negative four ok
7 SPELLER OUT OF RANGE ok

Make it as short as possible. (Hint: The Forth word ABS gives the absolute value of a number on the stack.) [answer]

9. Using your definition of WITHIN from Prob. 6, write another number-guessing game, called TRAP, in which you first enter a
secret value, then a second player triesto home in on it by trapping it between two numbers, asin this dialogue:

0 1000 TRAP_BETWEEN ok
330 660 TRAP_BETWEEN ok
440 550 TRAP_NOT BETWEEN ok
330 440 TRAP_BETWEEN ok

and so on, until the player guesses the answer:

391 391 TRAP_YQU G&OT | T! ok

Hint: you may have to modify the argumentsto WITHIN so that TRAP does not say "BETWEEN" when only one of the
argumentsis equal to the hidden value. [answer]

you're being
counted

WiC 32y

http://home.iae.nl/users/mhx/sf4/sf4.html (10 of 10) [2/24/2005 12:37:42 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf4/4-1.forth

\ Code from Starting Forth ter 4
\ ANSi zed by Benjam n Hoyt in 1997

problem4-1)

-1 0=0=(true)
0 0= 0= (false)
200 0= 0= (true)

http://home.iae.nl/users/mhx/sf4/4-1.forth [2/24/2005 12:37:43 PM]

http://home.iae.nl/users/mhx/sf4/4-3.forth

Code from Starting Forth ter 4
ANSi zed by Benjami n Hoyt in 1997

problem 4-3)

CARD (age --)
17 > IF ." ALCOHOLI C BEVERAGES PERM TTED " ELSE ." UNDER AGE " THEN ;

http://home.iae.nl/users/mhx/sf4/4-3.forth [2/24/2005 12:37:44 PM]

http://home.iae.nl/users/mhx/sf4/4-4.forth

Code from Starting Forth ter 4
ANSi zed by Benjami n Hoyt in 1997

problem 4-4)

SIGNNTEST (n --)

DUP O< IF ." Negative " DROP EXIT THEN
0> I1F ." Positive " EXIT THEN

Zero ;

http://home.iae.nl/users/mhx/sf4/4-4 forth [2/24/2005 12:37:44 PM]

http://home.iae.nl/users/mhx/sf4/4-5.forth

Code from Starting Forth ter 4
ANSi zed by Benjami n Hoyt in 1997

probl ens 4-5)

STAR [CHAR] * EMT ;

STARS (#stars --) 0 ?DO STAR LOCP ;
STARS (n--) 2?DUP IF STARS THEN ;

http://home.iae.nl/users/mhx/sf4/4-5.forth [2/24/2005 12:37:45 PM]

http://home.iae.nl/users/mhx/sf4/4-6.forth

Code from Starting Forth ter 4
ANSi zed by Benjami n Hoyt in 1997

probl ens 4-6)
WTHN (nlo hi+l -- flag) OVER - >R - R WK ;

http://home.iae.nl/users/mhx/sf4/4-6.forth [2/24/2005 12:37:45 PM]

http://home.iae.nl/users/mhx/sf4/4-7 forth

Code from Starting Forth ter 4
ANSi zed by Benjami n Hoyt in 1997

problem 4-7)

GQUESS (answer guess -- answer)

2DUP = IF ." Correct! " 2DROP EXIT THEN

OVER > IF ." Too high " ELSE ." Too low " THEN ;

http://home.iae.nl/users/mhx/sf4/4-7 forth [2/24/2005 12:37:46 PM]

http://home.iae.nl/users/mhx/sf4/4-8.forth

Code from Starting Forth ter 4
ANSi zed by Benjami n Hoyt in 1997

problem 4-8)

.SIGN (n--|n) DUPO< IF ." Negative " THEN ABS ;
SPELLER (n --)
DUP ABS 4 > IF ." Qut of range "
ELSE . SIGN
DUP O=1IF ." Zero " ELSE
DUP 1 =1IF." One " ELSE
DUP 2 =IF ." Two " ELSE
DUP 3 =IF ." Three " ELSE
." Four "
THEN THEN THEN THEN
THEN DROP ;

http://home.iae.nl/users/mhx/sf4/4-8.forth [2/24/2005 12:37:47 PM]

http://home.iae.nl/users/mhx/sf4/4-9.forth

Code from Starting Forth ter 4
ANSi zed by Benjami n Hoyt in 1997

WTHN (nlo hi+l -- flag) OVER - >R - R W ;
3DUP (abc--abcabc) DUP20VER ROT ;

problem 4-9)

TRAP (answer lo-try hi-try -- answer |)
3DUP OVER = ROT ROT = AND
IF ." You got it! " 2DROP DROP

ELSE 3DUP SWAP 1+ SWAP WTHIN IF ." Between "
ELSE ." Not between "
THEN
2DRCP
THEN ;

http://home.iae.nl/users/mhx/sf4/4-9.forth [2/24/2005 12:37:47 PM]

Leo Brodie's Starting Forth - Chapter 5

5 The Philosophy of Fixed Point

In this chapter we'll introduce a new batch of arithmetic operators. Along the way we'll tackle the
problem of handling decimal points using only whole-number arithmetic.

Quickie Operators

Let's start with the real easy stuff. Y ou should have no trouble figuring out what the words in the

(*)

1+ (n--ntl) Addsone

following table do.

1- (n--nl1) Subtractsone.

2+ (n--n+l) Addstwo.

2- (n--n-2) Subtractstwo.

2* (n--n*2) Multiplies by two (arithmetic left shift).

2/ (n--n/2) Divides by two (arithmetic right shift).

Slelslslsls

The reason they have been defined as words in your Forth system is that they are used very frequently in
most applications and even in the Forth system itself.

The only reason to use aword such as 1+, instead of one and +, is tradition. In modern Forths 1+ saves
neither space nor compile or execution time.

Miscellaneous Math Operators

Here's atable of four miscellaneous math operators. Like the quickie operators, these functions should be

obvious from their names. Aunt Min
ABS (n--1n|) Returns the absolute value. E Unj 2?\/| ax
NEGATE (n---n) Changes the sign. ZE
MN (n1n2--n-min) Returns the minimum. E
MAX (n1n2--n-max) Returns the maximum. E

http://home.iae.nl/users/mhx/sf5/sf5.html (1 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5

Here are two simple word problems, using ABS and MIN:

ABS
Write a definition which computes the difference between two numbers, regardiess
of the order in which the numbers are entered.

Dl FFERENCE - ABS ;

This gives the same result whether we enter

52 37 DI FFERENCE . 15 ok . .
37 52 DI FFERENCE . 15 ok

MIN
Write a definition which computes the commission that furniture salespeople will receive if they've been
promised $50 or 1/10 of the sales price, whichever isless, on each sale they make.

COWM SSION 10/ 50 MN ;

Three different values would produce these results:

600 COW SSION . 50 ok
450 COW SSI ON . 45 ok
50 COMW SSION . 5 ok

The Return Stack

We mentioned before that there were still some stack manipulation operators we hadn't discussed yet.
Now it'stime.

(%)

Up till now we've been talking about "the stack™" asif there were only one. But in fact there are two:
the "parameter stack” and the "return stack." The parameter stack is used more often by Forth
programmers, so it's simply called "the stack™ unless there is cause for doubt.

Asyou've seen, the parameter stack holds parameters (or "arguments") that are being passed from word
to word. The return stack, however, holds any number of "pointers’ which the Forth system uses to make
its merry way through the maze of words that are executing other words. We'll elaborate later on.

Y ou, the user, can employ the return stack as as kind of "extra hand" to hold values temporarily while
you perform operations on the parameter stack.

The return stack is alast-in first-out structure, just like the parameter stack, so it can hold many values.
But here's the catch: whatever you put on the return stack you must remove again before you get to the
end of the definition (the semicolon), because at that point the Forth system will expect to find a pointer
there. Y ou cannot use the return stack to pass parameters from one word to another.

The following table lists the words associated with the return stack. Remember, the stack notation refers
to the parameter stack.

http://home.iae.nl/users/mhx/sf5/sf5.html (2 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5

Takes avalue off the parameter stack and pushes it onto the
return stack.

Takes a value off the return stack and pushesit onto the
parameter stack.

>R(n--)
R>(--n)
I (--n) Copiesthetop of the return stack without affecting it.

R@(-- n) Copiesthe top of the return stack without affecting it.

Slalslsls

J (--n) Copiesthethird item of the return stack without affecting it.

The words >R and R> transfer a value to and from the return stack, respectively. Say we want the
following stack effect:

(231--321)
thisis the phrase that will do it:

>R SWAP R>
Each >R and its corresponding R> must be used together in the same definition.
The other three words--1 or R@ and J--only copy values from the return stack without removing them.
Thus the phrase:

>R SWAP R@
would produce the same result as far asit goes, but unless you clean up your trash before the next
semicolon you will crash the system.
To see how >R, R>, R@, and | might be used, imagine you are so unlucky as to need to solve the
equation:

ax2 + bx + c
with all four values on the stack in the following order:

(abcx--)
(remember to factor out first).

Oper ator parameter stack return stack

abcx
>R abc X
SWAP ROT cha X
R@ cbax X
* c b ax X
i c ax+b X
R> * c X(ax+b)
+ X(ax+b)+c

Go ahead and try it. Load the following definition:
QUADRATIC (abcx --n)

http://home.iae.nl/users/mhx/sf5/sf5.html (3 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5

>R SWAP ROT R@* + R> * + ;

Now test it:
2 7 9 3 QUADRATI C 48 ok

An Introduction to Floating-Point Arithmetic

First, what does floating point mean? Take a pocket calculator, for example. Here's what the display
looks like after each step:

You enter: rDeisz?y
1.50x 1.5
2.23 2.23

= 3.345

The decimal point "floats" across the display as necessary. Thisis caled a"floating point display."

"Floating point representation” is away to store numbers in computer memory using aform of scientific
notation. In scientific notation, twelve million is written:

12 x 106

since ten to the sixth power equals one million. In a computer twelve million is stored as two numbers:
12 and 6, where it is understood that 6 is the power of ten to be multiplied by 12, while 3.345 could be
stored as 3345 and -3.

The idea of floating-point representation is that the computer can represent an enormous range of
numbers, from atomic to astronomic, with two relatively small numbers.

What is fixed-point representation? It is simply the method of storing numbers in memory without
storing the positions of each number's decimal point. For example, in working with dollars and cents, all
values can be stored in cents. The program, rather than each individual number, can remember the
location of the decimal point.

For example, let's compare fixed-point and floating-point representations of dollars-and-cents values.

Real world Fixed-point Floating-point
value: representation: representation:

1.23 123 123(-2)

10.98 1098 1098(-2)
100.00 10000 1(2)
58.60 5860 586(-1)

Asyou can see, with fixed-point all the values must conform to the same "scale." The decimal points
must be properly "aligned" (in this case two placesin from the right) even though they are not actually
represented. With fixed-point, the computer treats all the numbers as though they were integers. If the

http://home.iae.nl/users/mhx/sf5/sf5.html (4 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5

program needs to print out an answer, however, it ssmply inserts the decimal point two places in from the
right before it sends the number to the terminal or to the printer.

Why Fixed-Point is Useful

A Forth programmer is most interested in maximizing the efficiency of the machine. That means he or
she wants to make the program run as fast as possible and require as little computer memory as possible.
Unfortunately, not all processors or controllers offer hardware floating-point support. Therefore, in some
environments, programs that use floating-point features are redirected through an emulation library.
Emulation code can be up to three times slower than the equivalent fixed-point calculation. Of course,
this difference is only really noticeable in programs which have to do alot of calculations before sending
results to aterminal or taking some action. The catch is that code from an emulation library is aso many
times larger than its fixed-point counterpart, which is quite uneconomical for small embedded controllers
and such.

Y ou should note carefully that when a processor supports hardware floating-point, it is almost always
much faster and more compact than the fixed-point equivalent. The speed difference can be between 3
and 15 times.

Everything you can do with floating-point, you can do with fixed-point too, as we'll show in the
following. But there is one thing you should minimize as much as possible, and that is switching back
and forth between fixed and floating-point formats. Format conversion and additional scaling steps cost
as much or even more time than doing the cal culations themsel ves.

Forth helps programmers use fixed-point by supplying them with a unique set of high-level commands
called "scaling operators.” We'l introduce the first of these commands in the next section. (The final
example in Chap. 12 illustrates the use of scaling techniques.)

Star-slash the Scalar

Here's amath operator that is as useful asit isunusual: */.

* o Multiplies, then divides (n1*n2/n3). Usesa l@
/- (nln2n3--n-result) double-length intermediate result.

Asitsnameimplies, */ performs multiplication, then division. For example, let's say that the stack
contains these three numbers:

(225 32 100 --)
*[will first multiply 225 by 32, then divide the result by 100.
This operator is particularly useful as an integer-arithmetic solution to problems such as percentage
calculations.
For example, you could define the word %like this:
% 100 */ ;
so that by entering the number 225 and then the phrase:

http://home.iae.nl/users/mhx/sf5/sf5.html (5 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5
32 %

you'd end up with 32% of 225 (that is, 72) on the
stack.

The method of first multiplying two integers, then
dividing by 100 isidentical to the approach most
people take in solving such problems om paper:

225
0.32 X
4. 50

67.5
72. 00 Sar and Sash:
Practise, practise ...

*[isnot * and a/ thrown together, though. It uses a
"double-length intermediate result." What does that mean, you ask?

Say you want to compute 34% of
912,345,678. Remember that
single-precision operators, like* and /,
only work with arguments and results
within the range of a single-length
number. If you were to enter the phrase:

912345678 34 * 100 /

you'd get an incorrect result, because the
"Intermediate result” (in this case, the
result of the multiplication), exceeds
2147483647, as shown in the | eft
column in this pictorial ssimulation. 310,197,530

310197530512

But */ uses a double-length intermediate
result, so that its range will be large enough to hold the result of any two single-length numbers
multiplied together. The phrase:

912345678 34 100 */
returns the correct answer because the end result falls within the range of single-length numbers.

The previous example brings up another question: how to round off.

Let's assume that thisis the problem:

If 32% of the students eating at the school cafetaria usually buy bananas, how many bananas
should be on hand for a crowd of 225? Naturally, we are only interested in whole bananas,
so we'd like to round off any decimal remainder.

As our definition now stands, any value to the right of the decimal is simply dropped. In other words, the
result is "truncated."

32% of: Result:
225=72.00 72 -- exactly correct

http://home.iae.nl/users/mhx/sf5/sf5.html (6 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5

226 =72.32 72 -- correct, rounded down (truncated)
227 =72.64 72 -- truncated, not rounded

Thereisaway, however, with any decimal value of .5 or higher, to round upwards to the next whole
banana. We could define the word R% for "rounded-percent,” like this:

R 10 */ 5 + 10 / ;
so that the phrase:
227 32 R%.
will give you 73, which is correctly rounded up.

Notice that we first divide by 10 rather than by 100. This gives us an extra decimal place to work with, to
which we can add five:

Operation IRk
Contents
2273210
*/ 726
5 + 731
10 / 73

(*)

A disadvantage to this method of rounding is that you lose one decimal place of range in the final result;
that is, it can only go as high as 214,748,364 rather than 2,147,483,647. But if that's a problem, you can
aways use double-length numbers, which we'll introduce later, and still be able to round.

Thefinal division by ten sets the value to its rightful decimal position. Try it and see.

Some Perspective on Scaling

Let's back up for aminute. Take the ssmple problem of computing two-thirds of 171. Basically, there are
two ways to go about it.

1. We could compute the value of the fraction 2/3 by dividing 2 by 3 to obtain the repeating decimal
6666666, etc. Then we could multiply this value by 171. The result would be 113.9999999, etc.,
which is not quite right but which could be rounded up to 114.

2. We could multiply 171 by 2 to get 342. Then we could divide this by 3 to get 114.
Notice that the second way is simpler and more accurate.

Most computer languages support the first way. "Y ou can't have afraction like two-thirds hanging
around inside a computer,” it is believed, "you must express it as .6666666, etc."

Forth supports the second way. */ lets you have afraction like two-thirds, asin:
171 2 3 */

Now that we have alittle perspective, let's take a slightly more complicated example:

http://home.iae.nl/users/mhx/sf5/sf5.html (7 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5
- . | (*)
We want to distribute $150 in proportion to two values:

7,105 ?
5,145 ?
12, 250 150

Again, we
could solve the
problem this

way':

and
(5,

but for greater
accuracy we
should say:

and

which in Forth
IS written:

and
5145 150 12250 */ . 63 ok hind

It can be said that the values 87 and 63 are "scaled" to 7105 and 5145. Calculating percentages, as we did
earlier, isalso aform of scaling. For thisreason, */ is called a "scaling operator.”

Another scaling operator in Forth is*/MOD:
Multiplies, then divides

. :
*/ MOD (n1n2n3 -- n-rem n-result) gr% tzze/gi)dtﬁeﬁttuﬂgz remainder

double-length intermediate result.

WEell let you dream up a good example for */MOD yourself.

Using Rational Approximations

*
So far we've only used scaling operations to work on rational () numbers. They can also be used on
rational approximations of irrational constants, such as mtor the +2. For example, the real value of Ttis:

3.14159265358979, etc.

http://home.iae.nl/users/mhx/sf5/sf5.html (8 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5
but to stay within the bounds of single-length arithmetic, we could write the phrase:
31416 10000 */
and get a pretty good approximation.
Now we can write a definition to compute the area of acircle, given itsradius. We'll trandate the
formula:
T 2

into Forth. The value of the radius will be on the stack, so we DUP it and multiply it by itself, then
star-slash the resullt:

Pl DUP * 31416 10000 */

Try it with acircle whose radiusis 10 inches:
10 PI . _314 ok

But for even more accuracy, we might wonder if thereisapair of integers beside 3146 and 10000 that is
acloser approximation to Tt Surprisingly, thereis. The fraction:

355 113 */
Is accurate to more than six places beyond the decimal, as opposed to less than four places with 31416.

Our new and improved definition, then, is:
Pl DUP * 355 113 */ ;

It turns out that you can approximate nearly any constant by many different pairs of integers, all numbers
less than 32768, with an error less than 10-8.

Handy Table of Rational Approximationsto Various Constants

Number Approximation Error
A=3141.. 355/113 8.5x 108
A=3141.. 1068966896 / 340262731 1.0x 1020
2=1414 ... 19601 / 13860 1.5x 109
32=1.732... 18817/ 10864 1.1x 10°
e=2718 ... 28667 / 10564 5.5x 109
10=3.162 ... 22936/ 7253 5.7x 10°
122=1.059... 26797 | 25293 1.0x 109
log(2) / 1.6384 = 0.183 ... 2040/ 11103 1.1x 108
In(2) / 16.384 = 0.042 ... 485/ 11464 1.0x 107
Here'salist of the Forth words we've covered in this chapter:
1+ (n--n+l) Adds one.
1- (n--n-1) Subtracts one.
2+ (n--n+l) Adds two.
2- (n--n-2) Subtracts two.
2* (n--n*2) Multiplies by two (arithmetic left shift).

http://home.iae.nl/users/mhx/sf5/sf5.html (9 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5

2/ (n--n/2)

ABS (n--1n|)
NEGATE(n---n)

M N (nln2--n-min)
MAX (nln2--n-max)

>R (n-)
R> (--n)
| (-n)
R@ (-n)
J (--n)
*/ (nln2n3--n-result)

*/ MOD ('nln2n3--n-remn-result)

Double-length intermediate result

Fixed-point arithmetic

Floating-point arithmetic

Parameter stack

Return stack

Scaling

Divides by two (arithmetic right shift).

Returns the absolute value.

Changesthe sign.

Returns the minimum.

Returns the maximum.

Takes avalue off the parameter stack and pushes it onto the
return stack.

Takes avalue off the return stack and pushes it onto the
parameter stack.

Copies the top of the return stack without affecting it.
Copies the top of the return stack without affecting it.
Copiesthe third item of the return stack without affecting it.
Multiplies, then divides (n1* n2/n3). Uses a double-length
intermediate result.

Multiplies, then divides (n1* n2/n3). Returns the remainder and
the quotient. Uses a double-length intermediate result.

Review of Terms
. ___|
a double-length value which is created temporarily by atwo-part
operator, such as */, so that the "intermediate result" (the result of the
first operation) is allowed to exceed the range of a single-length
number, even when the initial arguments and the final result are not.
arithmetic which deals with numbers which do not themselves
indicate the location of decimal points. Instead, for any group of
numbers, the program assumes the location of the decimal point or
keeps the decimal location for all such numbers as a separate number.
arithmetic which deals with numbers which themselves indicate the
location of their decimal points. The program must be able to interpret
the true value of each individual number before any arithmetic can be
performed.
in Forth, the region of memory which serves as common ground
between various operations to pass arguments (numbers, flags, or
whatever) from one operation to another.
in Forth, aregion of memory distinct from the parameter stack which
the Forth system uses to hold "return addresses" (to be discussed in
Chap. 9), among other things. The user may keep values on the return
stack temporarily, under certain conditions.
the process of multiplying (or dividing) a number by aratio. Also
refers to the process of multiplying (or dividing) a number by a power
of ten so that all valuesin a set of data may be represented as integers
with the decimal points assumed to be in the same place for all values.

http://home.iae.nl/users/mhx/sf5/sf5.html (10 of 11) [2/24/2005 12:37:53 PM]

Leo Brodie's Starting Forth - Chapter 5

Problems -- Chapter 5

1. Trandate the following algebraic expression into a Forth definition:

-a b
C

given (ab c--) [answer]
2. Given these four numbers on the stack:
(6 70 123 45 --)
write an expression that prints the largest value. [answer]
3. In"calculator style," convert the following temperatures, using these formulas:
°C=(°F-32)/1.8
OF = (°C x 1.8) + 32
OK =0C + 273
(For now, express all arguments and results in whole degrees.)
1. O09FinCentigrade
2. 212°F in Centigrade
3. -32°F in Centigrade
4. 160 C in Fahrenheit
5. 233°K in Centigrade
answer
4. Now define words to perform the conversionsin Prob. 3. Use the following names:
F>C F>K CF CK K>F K>C
Test them with the above values. [answer]

you're being
counted

WiC 35y

http://home.iae.nl/users/mhx/sf5/sf5.html (11 of 11) [2/24/2005 12:37:53 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf5/5-1.forth

Code from Starting Forth Chapter 5
ANSi zed by Benjami n Hoyt in 1997

problem5-1)
-ab/c (abc-- -ab/lc) */ NEGATE ;

http://home.iae.nl/users/mhx/sf5/5-1.forth [2/24/2005 12:37:54 PM]

http://home.iae.nl/users/mhx/sf5/5-2.forth

Code from Starting Forth Chapter 5
ANSi zed by Benjami n Hoyt in 1997

problem 5-2)
LARGEST (a b c d-- largest) MAX MAX MAX . ;

http://home.iae.nl/users/mhx/sf5/5-2.forth [2/24/2005 12:37:55 PM]

http://home.iae.nl/users/mhx/sf5/5-3.forth

\ Code from Starting Forth Chapter 5
\ ANSi zed by Benjam n Hoyt in 1997

(problem5-3)

0 32 - 10 18 */
212 32 - 10 18 */
-32 32 - 10 18 */ .

16 18 10 */ 32 + .
233 273 -

http://home.iae.nl/users/mhx/sf5/5-3.forth [2/24/2005 12:37:55 PM]

http://home.iae.nl/users/mhx/sf5/5-4.forth

L
\ Code from Starting Forth Chapter 5
\ ANSi zed by Benjam n Hoyt in 1997

(problemb5-4)

F~C (fahr -- cels) 32 - 10 18 */ ;
CF (cels -- fahr) 18 10 */ 32 + ;
CK (cels -- kelv) 273 + ;

K>C (kelv -- cels) 273 - ;

F>K (fahr -- kelv) F>C CK ;

K>F (kelv -- fahr) K>C CF ;

http://home.iae.nl/users/mhx/sf5/5-4.forth [2/24/2005 12:37:56 PM]

Leo Brodie's Starting Forth - Chapter 6

6 Throw it for a Loop

In Chap. 4 we learned to program the computer to make "decisions" by branching to different parts of adefinition
depending on the outcome of certain tests. Conditional branching is one of the things that make computers as useful as
they are.

In this chapter, we'll see how to write definitions in which execution can conditionally branch back to an earlier part of
the same definition, so that some segment will repeat again and again. Thistype of control construct is called a"loop."
The ability to perform loops is probably the most significant thing that makes computers as powerful asthey are. If we
can program the computer to make out one payroll check, we can program it to make out a thousand of them.

For now we'll write loops that do simple things like printing numbers at your terminal. In later chapters, we'll learn to do
much more with them.

Definite Loops -- DO...LOOP

One type of loop structure is called a"definite loop." Y ou, the programmer, specify the number of times the loop will
loop. In Forth, you do this by specifying a beginning number and an ending number (in reverse order) before the word
DO. Then you put the words which you want to have repeated between the words DO and LOOP. For example

TEST 10 0 DO CR ."™ Hello " LOCP ;
will print a carriage return and "Hello" ten times, because zero from ten isten.

TEST
Hel |l o
Hel |l o
Hel |l o
Hel | o
Hel | o
Hel |l o
Hel |l o
Hel | o
Hel |l o
Hel | o ok

Likean IF...THEN statement, which aso involves branching, a DO...L OOP statement must be contained within a
(single) definition.

Theteniscaled the"limit" and the zero is caled the "index."

FORMULA:
l[imt index DO ... LOOP

Here is what happensinside a DO...LOOP:

(%)

First DO puts the index and the limit on the loop control stack.

http://home.iae.nl/users/mhx/sf6/sf6.html (1 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

Then execution

proceeds up till the word
to the words inside the LOOP.
loop,

If the index isless than the limit, LOOP reroutes execution back to DO, and adds one to the index.

Eventually the index reaches ten, and L OOP |ets execution move on to the next word in the definition.

ML il N

http://home.iae.nl/users/mhx/sf6/sf6.html (2 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

Remember that the Forth word | copies the top of the loop control stack onto the parameter stack. Y ou can use | to get
hold of the current value of the index each time around. Consider the definition

DECADE 10 O DO | . LOOP ;
which executeslike this:

DECADE 0 1 2 3456 7 8 9 ok
Of course, you could pick any range of numbers (within the range of -2147483648 to +2147483647):

: SAMPLE -243 -250 DO | . LOOP ;
SAVPLE -250 -249 -248 -247 -246 -245 -244 ok

Notice that even negative numbers increase by one each time. The limit is always higher than the index.

Y ou can leave a number on the stack to serve as an argument to something inside a DO loop. For instance,

MULTI PLICATIONS CR 11 1 DO DUP I * . LOOP DROP ;
will produce the following results:

7 MJLTI PLI CATI ONS
7 14 21 28 35 42 49 56 63 70 ok

Here we're simply multiplying the current value of the index by seven each time around. Notice that we have to DUP the
seven inside the loop so that a copy will be available each time and that we have to DROP it after we come out of the
loop.

A compound interest problem gives us the opportunity to demonstrate some trickier stack manipulationsinside aDO
loop.

Given a starting balance, say $1000, and an interest rate, say 6%, let's write a definition to compute and print atable like
this:

1000 6 CAOVPOUND
YEAR 1 BALANCE 1060
YEAR 2 BALANCE 1124
YEAR 3 BALANCE 1191
etc.

for twenty years.

First we'll load R% our previously-defined word from Chap. 5, then we'll define

COMPOUND (anmt int --)

CR SWAP 21 1 DO ." YEAR " | . 3 SPACES
2DUP R+ DUP ." BALANCE " . CR
LOOP 2DRCP

Each time through the loop, we do a 2DUP so that we always maintain a running balance and an unchanged interest rate
for the next go-round. When we're finally done, we 2DROP them.

http://home.iae.nl/users/mhx/sf6/sf6.html (3 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

Getting IF fy

The index can also serve as a condition for an IF statement. In this way you can make something specia happen on
certain passes through the loop but not on others. Here's a simple example:

RECTANGLE 256 0 DO | 16 MOD 0= IF CR THEN

noo%n

LOCP :

RECTANGLE will print 256 stars, and at every sixteenth star it will also perform a carriage return at your terminal. The
result should look like this:

kkhkkhkkkhkkkhkikhkhkhkkk*k
kkkkkkkkhkikkhkkhkkhkkkk*
kkkhkkkikkkikkikkikkk*k*%x
R R R Sk b b S S R S I
kkhkkhkkkhkkkhkikhkhkhkkkk*k
kkhkkhkkkhkkkhkikhkhkhkkkk*k
kkkkkkkkkikkhkkhkkhkkkk*k
kkkkkikkkikkikkikkik*k*%x
R R R b b b S R S I S
kkhkkkkhkkkhkikhkhkhkkkk*k
kkhkkhkkkhkkkhkikhkhkhkkkk*
kkkkkkkkkikkikkhkkhkkkk*
kkkkkikkkikkikkikkik*k*%x
R R R Sk b b S S R S I Sk
kkhkkhkkkhkkkhkikhkhkhkkkk*

kkhkkhkkkhkkkhkikhkhkhkkkk*

And here's an example from the world of nursery rhymes. We'll let you figure this one out.

PCEM CR 11 1 DO I . ." Little "
| 3 MDO=1IF ." indians " CR THEN
LOOP
." indian boys. " ;

Nested Loops

In the last section we defined aword called MULTI PLI CATI ONS, which containsaDO...LOOP. If we wanted to, we
could put MULTI PLI CATI ONS inside another DO...LOORP, like this:

TABLE CR 11 1 DO | MULTIPLI CATIONS LOOP ;
Now welll get a multiplication table that looks like this:

12345678910
246 8 10 12 14 16 18 20
369 12 15 18 21 24 27 30
etc.
10 20 30 40 50 60 70 80 90 100

because the | in the outer loop supplies the argument for MULTI PLI CATI ONS.

http://home.iae.nl/users/mhx/sf6/sf6.html (4 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

Y ou can aso nest DO loops inside one another all in the same definition:

TABLE CR 11 1 DO
111DO I J* 5 UR LOOP
CR LOCP ;

Notice this phrase in the inner loop:

IR I

In Chap. 5 we mentioned that the word J copies the third item on the loop control stack
onto the parameter stack. It so happens that in this case the third item on the loop control
stack isthe index of the outer loop.

Thusthephrase" | J *" multipliesthe two indexes to create the value in the table.
Now what about this phrase? J
5 UR

Thisis nothing more than afancy . that is used to print numbers in table form so that
they line up vertically. The five represents the number of spaces we've decided each
column in the table should be. The output of the new table will look like this:

1 2 3 4 5 6 7 8 © 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30 etc.

o —

Each number takes five spaces, no matter how many digitsit contains. (U.R stands for "unsigned number-print, right
justified.” The term "unsigned,” you may recall, means you cannot use it for negative numbers.)

+LOOP

If you want the index to go up by some number other than one each time around, you can use the word +L OOP instead
of LOOP. +LOOP expects on the stack the number by which you want the index to change. For example, in the
definition

PENTAJUMPS 50 O DO | . 5 +LOOP ;
the index will go up by five each time, with this result:

PENTAJUVMPS 0 5 10 15 20 25 30 35 40 45 ok

whilein

FALLING -10 0O DO I . -1 +LOOP ;
the index will go down by one each time, with this result:

FALLINGO -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 ok

The argument for +LOOP, which is called the "increment,” can come from anywhere, but it must be put on the stack
each time around. Consider this experimental example:

I NG-COUNT DO | . DUP +LOOP DRCP ;

http://home.iae.nl/users/mhx/sf6/sf6.html (5 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

Thereis no increment inside the definition; instead, it will have to be on the stack when | NC- COUNT is executed, along
with the limit and index. Watch this:

Step up by one:

150 INCCOUNT 01 2 3 4 ok

Step up by two:

25 0 INGCOUNT_0 2 4 ok

Step down by three:

-3 -10 10 ING-COUNT_10 7 4 1 -2 -5 -8 ok

Our next example demonstrates an increment that changes each time through the loop.

DOUBLI NG 32767 1 DO | . | +LOOP ;
Here theindex itself is used astheincrement (I +LOOP), so that starting with one, the index doubles each time, like
this:

DOUBLI NG
124 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 ok

Notice that in this example we don't ever want the argument for
+LOORP to be zero, because if it were we'd never come out of the
loop. We would have created what is known as an "infinite loop."

DOing it -- Forth Style

There are afew things to remember before you go off and write
some DO loops of your own.

First, keep this simple guide in mind:

Reasons for ter mination

Execution makes its exit from aloop when, in going up, the index has reached or passed the limit.

http://home.iae.nl/users/mhx/sf6/sf6.html (6 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

going up...

10

Or, when in going down, the index has passed the limit--not when it has merely reached it.
But a DO loop always executes at least once (this example will loop millions of times on atrue ANS Forth system, so be
prepared):

: TEST 100 10 DO I . -1 +LOCP ;
TEST 10 9 8 7 ...

Second, remember that the words DO and L OOP are branching commands and that therefore they can only be executed
inside a definition. This means that you cannot design/test your loop definitionsin "calculator style" unless you ssimulate
the loop yourself.

Let's see how afledgling Forth programmer might go about design/testing the definition of COMPOUND (from the first
section of this chapter). Before adding the ." messages, the programmer might begin by jotting down this version on a
piece of paper:

COVPOUND (amt int --)
SWAP 21 1 DO | . 2DUP R% + DUP . CR LOOP 2DROP ;

The programmer migh test this version at the terminal, using . or . S to check the result of each step. The "conversation”
might look like this:

http://home.iae.nl/users/mhx/sf6/sf6.html (7 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

1000 6 SWAP .SEI

m_g_u_k In simulation, the prodgram-
...J mer omits the 'limit index
First 2DUP -SE. ‘ DO" phrase as well as any
time 6 1000 6 1000 ok reference to l.
thru
R s[4
6 1000 60 ok In simulation, thetprngram-
mer can omit the pup "
- 'SE phrase.
6 1060 ok
second 2DUP R% + .5 |4

time 6 1124 ok Everything seemsto be wor-
king. so the programmer
EDRQP_SIT pretends the last loop has

EMPTY ok finished and checks that the
stack is clear.

A Handy Hint
How to Clear the Sack

Sometimes a beginner will unwittingly write aloop which leaves awhole lot of numbers on the stack.
For example

FIVES 100 0 DO | 5 . LOOP ;
instead of

FIVES 100 0 DO | 5 * . LOCP ;
If you see this happen to anyone (surely it will never happen to you!) and if you see the beginner typing
in an endless succession of dotsto clear the stack, recommend typing in
XX

XX isnot aForth word, so the text interpreter will execute the word ABORT", which among other things
clearsal stacks. The beginner will be endlessly grateful.

Indefinite Loops

While DO loops are called definite loops, Forth also supports “indefinite" loops. Thistype of loop will repeat indefinitely
or until some event occurs. A standard form of indefinite loop is

BEG N ... UNTIL
The BEGIN...UNTIL loop repeats until a condition is"true."

The useageis
BEG N xxx f UNTIL

http://home.iae.nl/users/mhx/sf6/sf6.html (8 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

where "xxx" stands for the words that you want to be repeated, and "f" stands for aflag. Aslong astheflagis zero
(false), the loop will continue to loop, but when the flag becomes non-zero (true), the loop will end.

-'"'_'_'____"-_._\._H
A XXX T
’__.-"'fﬂ_'_‘___qﬂ-""k..\

\

/f y iﬁ \ (always repeats
i Y,
a'x

\ at least once)

TRUE wmp /

An example of adefinition that usesa BEGIN...UNTIL statement is one we mentioned earlier, in our washing machine
example:

TILL- FULL BEG N ?FULL UNTIL ;
which we used in the higher-level definition
FILL FAUCETS OPEN TILL-FULL FAUCETS CLCSE ;

?FULL will be defined to electronically check a switch in the washtub that indicates when the water reaches the correct
level. It will return zero if the switch is not activated and aoneif itis. Tl LL- FULL does nothing but repeatedly make
thistest over and over (millions of times per second) until the switch isfinally activated, at which time execution will
come out of the loop. Then the; in TI LL- FULL will return the flow of execution to the remaining wordsin FI LL, and
the water faucets will be turned off.

Sometimes a programmer will deliberately want to create an infinite loop. In Forth, the best way is with the form
BEG N xxx O UNTIL

The zero supplies a"false" flag to the word UNTIL, so the loop will repeat eternally.

Beginners usually want to avoid infinite loops, because executing one means that they lose control of the computer (in
the sense that only the words inside the loop are being executed). But infinite loops do have their uses. For instance, the
text interpreter is part of an infinite loop called QUIT, which waits for input, interprets it, executesit, prints "ok," then
waits for input once again. In most microprocessor-controlled machines, the highest-level definition contains an infinite
loop that defines the machine's behavior.

Another form of indefinite loop isused in this format:
BEGA N xx f VWH LE yyy REPEAT

Here the test occurs halfway through the loop rather than at the end. Aslong as the test is true, the flow of execution
continues with the rest of the loop, then returns to the beginning again. If the test isfalse, the loop ends.

http://home.iae.nl/users/mhx/sf6/sf6.html (9 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

.-"'f__—_—__x"a
Y
ST\
ij- f’rﬁ \‘x\ n‘.
/ | h,
|: E"‘fm \ | l \\‘K
1% i 'III ,r"r-;-
R /
| "-.\ ff.-' J,-"lll ,.-""
-\ e ralse =
AN -/

~ XXX -
AAR

Notice that the effect of the test is opposite that in the BEGIN...UNTIL construction. Here the loop repeats while
something is true (rather than until it's true).

The indefinite loop structures lend themselves best to cases in which you're waiting for some external event to happen,
such as the closing of a switch or thermostat, or the setting of aflag by another part of an application that is running
simultaneously. So for now, instead of giving examples, we just want you to remember that the indefinite loop structures
exigt.

The Indefinitely Definite Loop

Thereisaway to write adefinite loop so that it stops short of the prescribed limit if atruth condition changes state, by
using the word LEAVE. LEAVE causes the loop to end immediately.

Watch how we rewrite our earlier definition of COMPOUND. Instead of just letting the loop run twenty times, let's get it to
quit after twenty times or as soon as our money has doubled, whichever occursfirst.

Welll smply add this phrase:
2000 > IF LEAVE THEN
like this:

DOUBLED
6 1000 21 1 DO CR." YEAR" | 2 UR
2DUP R% + DUP . " BALANCE " .
DUP 2000 > IF CRCR ." nore than doubled in "
I . ." years " LEAVE

THEN
LOOP 2DROP ;
The result will ook like this:
DOUBLED
YEAR 1 BALANCE 1060
YEAR 2 BALANCE 1124
YEAR 3 BALANCE 1191
YEAR 4 BALANCE 1262
YEAR 5 BALANCE 1338

http://home.iae.nl/users/mhx/sf6/sf6.html (10 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

YEAR 6 BALANCE 1418
YEAR 7 BALANCE 1503
YEAR 8 BALANCE 1593
YEAR 9 BALANCE 1609
YEAR 10 BALANCE 1790
YEAR 11 BALANCE 1897
YEAR 12 BALANCE 2011

nore than doubled in 12 years ok

One of the problems at the end of this chapter asks you to rework DOUBLED so that it expects the parameters of interest
and starting balance, and computes by itself the double balance that LEAVE will try to reach.

Two Handy Hints: PAGE and QUIT

To give aneater appearance to your loop outputs (such as tables and geometric shapes), you might want to clear
the screen first by using the word PAGE. Y ou can execute PAGE interactively like this:

PAGE RECTANGLE

which will clear the screen before printing the rectangle that we defined earlier in this chapter. Or you could put
PAGE at the beginning of the definition. like this:

RECTANGLE PAGE 256 0 DO | 16 MDD O=IF CR THEN ." *" LQOCP ;

If you don't want the "ok" to appear upon completion of execution, use the word QUIT. Again, you can use
QUIT interactively:

RECTANGLE QUI T
or you can make QUIT the last word in the definition (just before the semicolon).

Here'salist of the Forth words we've covered in this chapter:

DO: (limit index --)

DO ... LOOP Sets up afinite loop, given the index range.

LOOP: (--)
DO +LOOP DO: (limitindex --) LikeDO ... LOOP except adds the value of n (instead of
T +LOOP: (--) always one) to the index.
LEAVE (--) Terminate the loop immediately.
BEG N ... UNTILUNTIL: (f--) Sets up an indefinite loop which ends when f istrue.
\?\EIGLE ;x WHILE: (f-) Sets up an indefinite loop which always executes xxx and
REPEAT asoyyy if fistrue. Endswhen f isfalse.
o Prints the unsigned single-length number, right-justified
UR (uwidth--) within the field widith.
PAGE (=) Clears the terminal screen and resets the terminal’s cursor to
the upper left-hand corner.
QI T (=) Terminates execution for the current task and returns

control to the terminal.

Review of Terms

http://home.iae.nl/users/mhx/sf6/sf6.html (11 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

aloop structure in which the words contained within the loop repeat a definite number of
definiteloop times. In Forth, this number depends on the starting and ending counts (index and limit)

which are placed on the stack prior to the execution of the word DO.

aloop structure in which the words contained within the loop continue to repeat without
Infiniteloop any chance of an external event stopping them, except for closing the Forth window or

shutting down or resetting the computer.

aloop structure in which the words contained within the loop continue to repeat until
Indefinite loop some truth condition changes state (true-to-false or false-to-true). In Forth, the indefinite

loops begin with the word BEGIN.

Problems -- Chapter 6

In Problems 1 trough 6, you will create several words which will print out patterns of stars (asterisks). These will involve
the use of DO loops and BEGIN...UNTIL loops.

1. First create aword named STARS which will print out n stars on the same line, given n on the stack:
10 STARS E *hkkkkhkkkkk Ok

answer
2. Next define BOX which prints out arectangle of stars, given the width and height (number of lines), using the stack
order (width height --).
10 3 BOX

kkhkkkhkkkkk*k*k
*khkkkkkkk*k*%

kkhkkkkkkk*k*% Ok

answer

3. Now create aword named \ STARS which will print a skewed array of stars (arhomboid), given the height on the
stack. Use aDO loop and, for simplicity, make the width a constant ten stars.

3 \ STARS

*kkkkkik*kkk*%
kkkkkkkik*k*x
*kkkkkkkk*k ok

answer

4. Now create aword which slants the stars the other direction: call it / STARS. It should take the height as a stack
input and use a constant ten width. Use a DO loop. [answer]

5. Now redefine thislast word, using aBEGIN...UNTIL loop. [answer]

6. Write adefinition called DI AMONDS which will print out the given number of diamond shapes, as shown in this
example.

2 DI AMONDS

* k%

* kk k%

http://home.iae.nl/users/mhx/sf6/sf6.html (12 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6
kkkkkk*%
*kkkkkk*kk*%x
*kkk kkkkkkk*k*%x
*kkkkkhkkkhkkkhkkk*k
kkkhkkkhkkikkhkkkkk*k
kkhkkkhkkhkkkhkkhkkkhkkhkhkkhkkx
EE IR R b Sk I b b b b S S S b b b b
kkkkkhkkkhkkkhkihkkkhkkhkkikhk*%x
kkkkkikkkhkkhkkkkkhkkikki*x
kkkhkkkhkkhkkikkkkk*k
kkkkkhkkkhkkkhkkkk*k
kkhkkikkkkhkkkhk*k*x
*kkk*kk*k*kk*kx
kkkkk%
*kkk*k
* k%
*
*
* k%

*kkk*k
kkkkkk*
kkkkkkkk%x
kkkkkikkikkk*k
kkkkkhkkkhkkkhkkkk*k
kkkhkkkhkkhkkikkkkk*k
kkhkkkkhkkkhkkhkkkhkkhkhkkhkkx
kkhkkhkkhkkhkkhkkikhhkkkkhkkhkikikkk*k
kkhkkkhkkkhkhkkhhkkikkikhkkikkk*k
kkkkkikkkhkkhkkkhkkhkkikk*x
kkkhkkkhkkhkkikkkkk*k
kkhkkkkhkkkhkkkhkkkk*
kkkkkkkkhk*k*x
*kkkkkk*k*%
kkkkkk*%

*kkk*k
* k%

*

answer

7. Inour discussion of LEAVE we gave an example which computed 6% compound interest on a starting balance of
$1000 for 20 years or until the balance had doubled, whichever came first. Rewrite this definition so that it will
expect a starting balance and interest rate on the stack and will LEAV E when this starting balance has doubl ed.

answer

8. Defineaword called ** that will compute exponential values, like this:
7 2 ** . _49 ok
(seven sguared)
2 4 ** . 16 ok
(two to the fourth power)

For simplicity, assume positive exponents only (but make sure * * works correctly when the exponent is one--the
result should be the number itself). [answer]

http://home.iae.nl/users/mhx/sf6/sf6.html (13 of 14) [2/24/2005 12:38:06 PM]

Leo Brodie's Starting Forth - Chapter 6

you're being
counted

WiC 35y

http://home.iae.nl/users/mhx/sf6/sf6.html (14 of 14) [2/24/2005 12:38:06 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf6/6-1.forth

Code from Starting Forth Chapter 6
ANSi zed by Benjami n Hoyt in 1997

STAR [CHAR] * EMT ;
STARS (#stars --) 0 ?DO STAR LOOP ;

http://home.iae.nl/users/mhx/sf6/6-1.forth [2/24/2005 12:38:07 PM]

http://home.iae.nl/users/mhx/sf6/6-2.forth
\ Code from Starting Forth Chapter 6
\ ANSi zed by Benjam n Hoyt in 1997

STAR [CHAR] * EMT ;
STARS (#stars --) 0 ?DO STAR LOOP ;

(problens 6-1 TO 6-5)

BOX (width height --)
0 DO CR DUP STARS LOOP DROP ;

http://home.iae.nl/users/mhx/sf6/6-2.forth [2/24/2005 12:38:07 PM]

http://home.iae.nl/users/mhx/sf6/6-3.forth

\ Code from Starting Forth Chapter 6
\ ANSi zed by Benjam n Hoyt in 1997

STAR [CHAR] * EMT ;
STARS (#stars --) 0 ?DO STAR LOOP ;

\STARS (height --)
0 DO CR | SPACES 10 STARS LOOP ;

http://home.iae.nl/users/mhx/sf6/6-3.forth [2/24/2005 12:38:09 PM]

http://home.iae.nl/users/mhx/sf6/6-4.forth

\ Code from Starting Forth Chapter 6
\ ANSi zed by Benjam n Hoyt in 1997

STAR [CHAR] * EMT ;
STARS (#stars --) 0 ?DO STAR LOOP ;

/ STARS (height --)
1- 0 SMP DO CR | SPACES 10 STARS -1 +LOOP ;

http://home.iae.nl/users/mhx/sf6/6-4.forth [2/24/2005 12:38:10 PM]

http://home.iae.nl/users/mhx/sf6/6-5.forth

\ Code from Starting Forth Chapter 6
\ ANSi zed by Benjam n Hoyt in 1997

STAR [CHAR] * EMT ;
STARS (#stars --) 0 ?DO STAR LOOP ;

A/ STARS (height --)
BEGN CR 1- DUP SPACES 10 STARS DUP 0= UNTIL DROP ;

http://home.iae.nl/users/mhx/sf6/6-5.forth [2/24/2005 12:38:10 PM]

http://home.iae.nl/users/mhx/sf6/6-6.forth
\ Code from Starting Forth Chapter 6
\ ANSi zed by Benjam n Hoyt in 1997

STAR [CHAR] * EMT ;
STARS (#stars --) 0 ?DO STAR LOOP ;

(problem6-6)
. TRIANGLE (increnent limt start --)
DO CR 91 - SPACES | 2* 1+ STARS DUP +LOOP DROP ;

DI AMONDS (#di amonds --)
0 ?DO 1 10 0 TRIANGLE -1 0 9 TRIANGLE LOOP ;

http://home.iae.nl/users/mhx/sf6/6-6.forth [2/24/2005 12:38:12 PM]

http://home.iae.nl/users/mhx/sf6/6-7.forth
Code from Starting Forth Chapter 6
ANSi zed by Benjami n Hoyt in 1997

problem 6-7)
Roe (n1 %-- n2) 10 */ 5 + 10/ ;

DOUBLED (amount interest --)

OVER 2* SWAP ROT 21 1 DO
CR ." Year " | 2 .R 3 SPACES
2DUP R%+ DUP ." Bal " . DUP 20VER DROP > IF
CRCR ." Mre than doubled in" | . ." years " LEAVE

THEN LOOP 2DROP DROP

http://home.iae.nl/users/mhx/sf6/6-7.forth [2/24/2005 12:38:14 PM]

http://home.iae.nl/users/mhx/sf6/6-8.forth

Code from Starting Forth Chapter 6
ANSi zed by Benjami n Hoyt in 1997

probl em 6-8)
** (nl n2 -- nl1**n2)
1 SWAP ?DUP IF 0 DO OVER * LOOP THEN NP ;

http://home.iae.nl/users/mhx/sf6/6-8.forth [2/24/2005 12:38:16 PM]

Leo Brodie's Starting Forth - Chapter 7

7 A Number of Kinds of Numbers

So far we've only talked about signed single-length numbers. In this chapter we'll introduce unsigned numbers and
double-length numbers, as well as awhole passel of new operators to go aong with them. ’

This chapter is divided in two sections:

For beginners--this section explains how a computer looks at numbers and exactly what is meant by the
terms signed or unsigned and by single-length or double-length.

For everyone--this section continues our discussion of Forth for beginners and experts alike, and explains how Forth
handles signed and unsigned, single- and double-length numbers.

Section 1 -- For Beginners

Signed versus Unsigned Numbers

All digital computers store numbersin binary form. In Forth, the stack is (normally) thirty-two bits wide (a "bit" isa"binary digit").
Below isaview of thirty-two bits, showing the value of each bit:

@
e
Oe s oo
M0 e 0 R sE e O
=3 R Y R e T
s+ 8 o R o s oo El o i~ il oo
e~ Gl o Bl oo Bl o~ BEE e o el o BNl o e o
e) BaN <o el O B~ Be <~ MBS oo Bl — Emd o BOS oo IS o el
ES~ Mg o s S n o~ oo la s o s e o R o .
FacilE o liE ~ fm ol o e o el o fel 0 e o lee O B G el 0 Bee o BRl o
0 i — B B o BEE e s el — Bl oo B o P el e — BE o e S Dl — e <+ B o~

If every bit wereto contain a 1, the total would be 4294967295. Thus in 32 bits we can express any value between 0 and 4294967295.
Because this kind of number does not let us express negative values, we call it an "unsigned number." We have been indicating
unsigned numbers with the letter "u" in our tables and stack notations.

But what about negative numbers? In order to be able to express a positive or negative number, we need to sacrifice one bit that will
essentially indicate sign. This bit isthe one at the far left, the "high-order bit." In 31 bits we can express a number as high as
2147483647. When the sign bit contains 1, then we can go an equal distance back into the negative numbers. Thus within 32 bits we
can represent any number from -2147483648 to +2147483647. This should look familiar to you as the range of a single-length
number, which we have been indicating with the letter "n."

Before we leave you with any misconceptions, we'd better clarify the way negative numbers are represented. Y ou might think that it's
asimple matter of setting the sign bit to indicate whether a number is positive or negative, but it doesn't work that way.

To explain how negative numbers are represented, let's return to decimal notation and examine a counter such as that found on many
WWW internet pages. 20400

Let's say the counter has three digits, not five. As more people visit the page, the counter-wheels turn and the number increases.
Starting once again with the counter at 0, now imagine you badly regret having visited the page and could "un-visit" it by rolling the
counter wheels backward. The first number you seeis 999, which is, in asense, the same as -1. The next number will be 998, which is
the same as -2, and so on.

The representation of signed numbersin acomputer is similar.

Starting with the number

0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000
and going backwards one number, we get

1111,1211,1112,112121,12111,111212,1211, 1111 (thirty-two ones)
which stands for 4294967295 in unsigned notation as well asfor -1 in signed notation. The number

http://home.iae.nl/users/mhx/sf7/sf7.html (1 of 17) [2/24/2005 12:38:25 PM]

Leo Brodie's Starting Forth - Chapter 7

1111,1211,1112,11221,21112,1121,1111, 1110
which stands for 4294967294 in unsigned notation, represents -2 in signed notation.

Here's a chart that shows how a binary number on the stack can be used either as an unsigned number or as a signed number:

As an unsigned
number
4794977205 i1 1011 1511 anal ToiT i it g As 3
signed number
2147483648 1000 0000 0000 0000 0000 DOOOD 0000 o000
2147483647 BEPL. TERE Tl 10T R e vty 2147483647
0 0000 0000 0000 0000 0000 DOOOD 0000 0000 0
B S R R ~1
1000 0000 0000 0000 0000 DOOD 0000 o000 -2147483648

This bizarre-seeming method for representing negative values makes it possible for the computer to use the same procedures for
subtraction as for addition.

To show how thisworks, let's take a very simple problem:
2
-1
Subtracting one from two is the same as adding two plus negative one. In single-length binary notation, the two looks like this:
0000, 0000, 0000, 0000, 0000, 0000, 0000, 0010
while negative-one looks like this:
1111,111217,11121,111217,111217, 11121, 1111, 1111

The computer adds them up the same way we would on paper; that is when the total of any column exceeds one, it carries aone into
the next column. The result looks like this:

0000, 0000, 0000, 0000, 0000, 0000, 0000, 0010
+1111,1111,1111,1111,1111,1111,1111,1111
10000, 0000, 0000, 0000, 0000, 0000, 0000, 0001

Asyou can see, the computer had to carry a one into every column all the way across, and ended up with a one in the thirty-third
place. But since the stack is only thirty-two bits wide, the result is simply

0000, 0000, 0000, 0000, 0000, 0000, 0000, 0001
which is the correct answer, one.

We needn't explain how the computer converts a positive number to negative, but we will tell you that the processis caled "twao's
complementing.”

Arithmetic Shift

While we're on the subject of how a computer performs certain mathematical operations, we'll explain what is meant by the
mysterious phrases back in Chap. 5: "arithmetic left shift" and "arithmetic right shift."

A Forth Instant Replay

2* (n--n*2) Multiplies by two (arithmetic left shift)
2/ (n--n/2) Divides by two (arithmetic right shift)
LSHI FT (nu--n*2*u) Logical left shift over u positions

http://home.iae.nl/users/mhx/sf7/sf7.html (2 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7
RSHI FT (n--n/2*-u) Logical right shift over u positions

Toillustrate, let's pick a number, say six, and writeit in binary form:
0000, 0000, 0000, 0000, 0000, 0000, 0000, 0110
(4+2). Now let's shift every digit one place to the left, and put a zero in the vacant place in the one's column.
0000, 0000, 0000, 0000, 0000, 0000, 0000, 1100
Thisisthe binary representation of twelve (8+4), which is exactly double the original number. Thisworksin all cases, and it aso

works in reverse. If you shift every digit one place to the right and fill the vacant digit with a zero, the result will always be half of the
original value.

In arithmetic shift, the sign bit does not get shifted. This means that a positive number will stay positive and a negative number will
stay negative when you divide or multiply it by two.

When the high-order bit shifts with all the other bits, the termis"logical shift." In Forth you can do alogical shift of up to 32 places
with thewords LSHIFT and RSHIFT.

The important thing for you to know is that most computers can shift digits much more quicky than they can go through al the
folderol of normal division or multiplication. When speed is critical, it's much better to say

2*
than
2 *
and it may even be better to say
2% 2% 2%
than
8 *

depending on your particular model of computer, but this topic is getting too technical for right now.

An Introduction to Double-length Numbers

A double-length number is just what you probably expected it would be: a number that is represented in sixty-four bits instead of
thirty-two. Signed double-length numbers have a range of +/-18,446,744,073,709,551,615.

In Forth, a double-length number takes the place of two single-length numbers on the stack. Operators like 2DUP are useful either for
double-length numbers or for pairs of single-length numbers.

One more thing we should explain: to the non-Forth-speaking computer world, the term "double word" means a 32-bit value, or four
bytes. But in Forth, "word" means a defined command. So in order to avoid confusion, Forth programmers refer to a 32-bit value asa
"cell." A double-length number requires two cells.

Other Number Bases

Asyou get moreinvolved in programming, you'll need to employ other number bases besides decimal and binary, particularly
hexadecimal (base 16) and octal (base 8). Since we'll be talking about these two number bases later on in this chapter, we think you
might like an introduction now.

Computer people began using hexadecimal and octal numbers for one main reason: computers think in binary and human beings have
a hard time reading long binary numbers. For people, it's much easier to convert binary to hexadecimal than binary to decimal,
because sixteen is an even power of two, while ten is not. The sameis true with octal. So programmers usually use hex or octal to
express the binary numbers that the computer uses for things like addresses and machine codes. Hexadecimal (or smply "hex") looks
strange at first since it uses the letters A through F.

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3

http://home.iae.nl/users/mhx/sf7/sf7.html (3 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7

4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Let'stake a single-length binary number:
00000000000000000111101110100001

To convert this number to hexadecimal, we first subdivide it into eight units of four bits each:

| 0000 | 0000 | 0000 | 0000 | 0111 | 1011 | 1010 | 0001 |
then convert each 4-bit unit to its hex equivalent:

| 0] 0] O] O] 7] B| Al 1]
or smply 7BA1.

Octal numbers use only the numerals 0 through 7. Because nowadays most computers use hexadecimal representation, we'll skip an
octal conversion example.

WEe'l have more on conversions in the section titled "Number Conversions® later in this chapter.

The ASCII Character Set

If the computer uses binary notation to store numbers, how does it store characters and other symbols? Binary, again, but in a special
code that was adopted as an industry standard many years ago. The code is called the American Standard Code for Information
Interchange, usually abbreviated ASCII.

Table 7-1 shows each ASCI| character in the system, its |SO 646-1983, SO 7-bit coded characterset for information interchange,
International Reference Version equivalent (IRV), and its hexadecimal form.

The charactersin the first column (ASCII codes 0-1F hex) are called "control characters' because they indicate that the terminal or
computer is supposed to do something like ring its bell, backspace, start a new line, etc. The remaining characters are called "printing
characters' because they produce visible characters including letters, the numerals zero through nine, all available symbols and even
the blank space (hex 20). The only exception is DEL (hex 7F) which isasignal to the computer to ignore the last character sent.

In Chap. 1 we introduced the word EMIT. EMIT takes an ASCII code on the stack and sendsit to the terminal so that the terminal
will print it as a character. For example,

65 EM T_A ok
66 EM T_B ok

etc. (We're using the decimal, rather than the hex, equivalent because that's what your computer is most likely expecting right now.)

Why not test EMIT on every printing character, "automatically"?
PRI NTABLES 127 32 DO | EMT SPACE LOCP ;
PRI NTABLES will emit every printable character in the ASCI| set; that is, the characters from decimal 32 to decimal 126. (We're
using the ASCII codes as our DO loop index.)
PRINTABLES ! " # $ %&"' () * +, - . [... ok

Table 7.1 - Standard graphic characters & Equival ents

http://home.iae.nl/users/mhx/sf7/sf7.html (4 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7

Hex ASCIT [Hex ASCIT [Hex IRV ASCII [Hex IRV ASCII [Hex IRV ASCI1 [Hex IRV ASCIT [Hex IRV ASCIT [Hex IRV ASCI|
OONUL | 10DLE | 20 3000 | 40@@ 50PP | 60" 70pp
OLSOH | 11DCL | 21! 3111 | 41AA 51QQ | 6laa 71qq
02STX | 12DC2 | 22"" | 3222 | 42BB | G52RR | 62bb | 72rr
03ETX | 13DC3 | 23## 3833 | 43CC 53SS | 63cc 73ss
04EOT | 14DC4 | 24-% 3444 | 44DD 54TT | 64dd 74tt
05ENQ | I5NAK | 25%% 355 | 45EE 55UU | 65ee 750U
06ACK | 16SYN | 26&& | 3666 | 46FF | ©56VV | 66ff | 76vv
[O7BEL | 17ETB | 27'* | 3777 | 47GG | S5/WW | 6799 | T7Tww
08BS | 18CAN | 28((3888 | 48HH 58XX | 68hh 78X X
09HT [19EM | 29)) 3999 | 4911 5OYY | 69 79yy
OALF [1ASUB | 2A** 3n:: | 4AJ) | BAzZzZ | 6Aj] | T7Azz
[TOBVT | 1BESC | 2B++ | 3B;; | 4BKK | SB[[| 6Bkk | 7B{{
OCFF | ICFS | 2C,, 3C<< | 4CLL 5C\\ | 6CIl 7CI]
ODCR | IDGS | 2D-- 3D== | 4DMM 50]] | 6Dmm D}}
OESM | 1ERS | 2E.. 3E>> | 4ENN SEA~ | 6Enn | T7E~~
[OFSI | IFUS | 2F/] | 3F?? | 400 | ©&F [6Foo |

Beginners may be interested in some of the control characters as well. For instance, try this:

7

EM T_ok

Y ou should have heard some sort of beep, which isthe video terminal's version of the mechanical printer's "typewriter bell."

Other control characters that are good to know include the following:
decimal equivalent

Experiment with these control characters, and see what they do.

name operation

BS backspace 8
LF line feed 10
CR carriagereturn 13

ASCII isdesigned so that each character can be represented by one byte. The tables in this book use the letter "c" to indicate a byte
value that is being used as a coded ASCI| character.

Bit Logic

The words AND and OR (which we introduced in Chap. 4) use "bit logic"; that is, each bit is treated independently, and there are no
"carries’ from one bit-place to the next. For example, let's see what happens when we AND these two binary numbers:

0000, 0000, 0000, 0000, 0000, 0000, 1111, 1111
0000, 0000, 0000, 0000, 0110, 0101, 1010, 0010 AND

0000, 0000, 0000, 0000, 0000, 0000, 1010, 0010

For any result-bit to be "1," the respective bits in both arguments must be "1." Notice in this example that the argument on top
contains all zeroes in the high-order bytes and all onesin the low-order byte. The effect on the second argument in this exampleis
that the low-order eight bits are kept but the high-order twenty-four bits are all set to zero. Here the first argument is being used as a

"mask," to mask out the high-order bytes of the second argument.

The word OR also uses bit logic. For example,

1000, 0100, 0010, 0001, 1000, 1001, 0000, 1001
0110, 0110, 0110, 0110, 0000, 0011, 1100, 1000 OR

http://home.iae.nl/users/mhx/sf7/sf7.html (5 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7
1110, 0110, 0110, 0111, 1000, 1011, 1100, 1001

A "1" in either argument produces a"1" in the result. Again, each column is treated separately, with no carries.

By clever use of masks, we could even use a 32-bit value to hold 32 separate flags. For example, we could find out whether this bit
1000, 0100, 0010, 0001, 1000, 1001, 0000, 1001
N

is"1" or "0" by masking out al other flags, like this:
1000, 0100, 0010, 0001, 1000, 1001, 0000, 1001

0000, 0000, 0000, 0000, 1000, 0000, 0000, 0000 AND
0000, 0000, 0000, 0000, 1000, 0000, 0000, 0000

Since the bit was"1," theresult is "true." Had it been "0," the result would have been "0" or "false."

We could set the flag to "0" without affecting the other flags by using this technique:
1000, 0100, 0010, 0001, 1000, 1001, 0000, 1001

1111,1111,1133,1311,0113,13733,13117,1111 AND
1000, 0100, 0010, 0001, 0000, 1001, 0000, 1001
N

We used amask that contains all "1"s except for the bit we wanted to set to "0." We can set the same flag back to "1" by using this
technique:

1000, 0100, 0010, 0001, 0000, 1001, 0000, 1001

0000, 0000, 0000, 0000, 1000, 0000, 0000, 0000 OR
1000, 0100, 0010, 0001, 1000, 1001, 0000, 1001
AN

Section 2 -- For Everybody

Signed and Unsigned Numbers

Back in Chap. 1 we introduced the word NUMBER. If the word FIND can't find an incoming string in the dictionary, it hands it over
to the word NUMBER. NUMBER then attempts to convert the string into a number expressed in binary form. If NUMBER succeeds,
it pushes the binary equivalent onto the stack.

This means that NUMBER does not check whether the number you've entered as a single-length number exceeds the proper range. If
you enter a giant number, NUMBER convertsit but only saves the least significant thirty-two digits.

NUMBER does not do any range-checking. Because of this, NUMBER can convert either signed or Eiosi Giagiimmaroers.

For instance, if you enter any number between 2147483648 and 4294967295, NUMBER will convert it as an unsigned number. Any
value between -2147483648 and -1 will be stored as a two's-complement integer.

Thisisan important point: the stack can be used to hold either signed or unsigned numbers. Whether abinary value is interpreted as
signed or unsigned depends on the operators that you apply to it. Y ou decide which form is better for a given situation, then stick to
your choice.
We've introduced the word ., which prints a value on the stack as a signed number:

4294967295 . _-1 ok

Theword U. prints the binary representation as an unsigned number:
4294967295 U. 4294967295 ok

u. ’ '{‘_’E—r (u--) ’Prints the unsigned single-length number, followed by a space.

In this book the letter "n" signifies signed single-length numbers, while the letter "u" signifies unsigned single-length numbers.
(We've dready introduced U.R, which prints an unsigned single-length number right-justified within a given column width.)

http://home.iae.nl/users/mhx/sf7/sf7.html (6 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7
Hereisatable of additional words that use unsigned numbers:

Multiplies two single-length numbers. Returns a double-length
result. All values are unsigned.

i . Divides a double-length by a single-length number. Returns a
<180 g (Ve UL == U2 VS single-length quotient u2 and remainder u3. All values are unsigned.

U< ?f"_'_i; (ulu2--f) Leavestrueif ul < u2, where both are treated as single-length
unsigned integers.

UM ™ (ulu2--ud)

Number Bases

When you first start Forth, all number conversions use base ten (decimal), for both input and output.

currant
base

Y ou can easily change the base by executing one of the following commands:

IHEX |(--) |[Setsthe base to sixteen.
OCTAL |(--) |Setsthe base to eight (available on some systems).
DECI VAL |(--) |Returnsthe baseto ten.

When you change the number base, its stays changed until you change it again. So be sure to declare DECIMAL as soon asyou're
done with another number base.

These commands make it easy to do number conversionsin "calculator style."

For example, to convert decimal 100 into hexadecimal, enter

DECI MAL 100 HEX . 64 ok

To convert hex F into decimal (remember you are already in hex), enter

OF DECI MAL . 15 ok

Make it a habit, starting right now, to precede each hexadecimal value with a zero, asin

OA 0B OF

This practice avoids mix-ups with possibly predefined words as DEADBEEF, BAD, DEC etc.
BI NARY 2 BASE ! ;

The new word BINARY will operate just like OCTAL or HEX but will change the number base to two. On systems which do not
have the word OCTAL, experimenters may define

OCTAL 8 BASE ! ;

___|]
Beginners who want to see what numbers look like in binary notation may enter this definition:

http://home.iae.nl/users/mhx/sf7/sf7.html (7 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7
Double-length Numbers
Handy Hint
Double-length numbers provide arange of +/-18,446,744,073,709,551,615. ANS Forth systems support double-length numbersto

some degree. The way to enter a double-length number onto the stack (whether from the Rejgstrittpor ot GHINARE)- ioAmndERfe it
with one of these five punctuation marks:

R

For example, when you type

200, 000

NUMBER recognizes the comma as a signal that this value should be converted to double-length. NUMBER then pushes the value
onto the stack as two consecutive "cells' (cell isthe Forth term for single-length), the high order cell on top.

200,000

The Forth word D. prints a double-length number without any punctuation.

D. f} (d--) |Printsthe signed double-length number, followed by one space.

In this book, the letter "d" stands for a double-length signed integer.

For example, having entered a double-length number, if you were now to execute D., the computer would respond:
D. 200000 ok

Notice that all of the following numbers are converted in exactly the same way:
12345. D. 12345 ok
123.45 D. 12345 ok
1-2345 D. 12345 ok

1/ 23/ 45 D. 12345 ok
1:23:45 D. 12345 ok

But thisis not the same:
-12345

because this value would be converted as a negative, single-length number. (Thisisthe only case in which a hyphen is interpreted as
aminus sign and not as punctuation.)

In the next section we'll show you how to define your own equivalentsto D. which will print whatever punctuation you want along
with the number.

Number Formatting -- Double-length Unsigned

$200. 00 12/ 31/ 80 372-8493 6:32: 59 98. 6

The above numbers represent the kinds of output you can create by defining your own "number-formatting words" in Forth. This

http://home.iae.nl/users/mhx/sf7/sf7.html (8 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7
section will show you how.

The simplest number-formatting definition we could write would be
UD. <# #S #> TYPE ;

UD. will print an unsigned double-length number. The words <# and #> (respectively pronounced bracket-number and
number-bracket) signify the beginning and the end of the number-conversion process. In this definition, the entire conversion is being
performed by the single word #S (pronounced numbers). #S converts the value on the stack into ASCII characters. It will only
produce as many digits as are necessary to represent the number; it will not produce leading zeroes. But it always produces at |east
one digit, which will be zero if the value was zero. For example:

12, 345 UD. 123450k
12. UD. 120k
0. UD. 0ok

The word TY PE prints the characters that represent the number at your terminal. Notice that there is no space between the number
and the "ok." To get a space, you would simply add the word SPACE, likethis:

UD. <# #S #> TYPE SPACE ;
Now let's say we have a phone number on the stack, expressed as a double-length unsigned integer. For example, we may have typed
in:
372-8493

(remember that the hyphen tells NUMBER to treat this as a double-length value). We want to define aword which will format this
value back as aphone number. Let'scall it . PH# (for "print the phone number") and define it thus:

PHE <# # # # # [CHAR] - HOLD #S #> TYPE SPACE ;

Our definition of . PH# has everything that UD. has, and more. The Forth word #
(pronounced number) produces asingle digit only. A number-formatting definition is reversed []
from the order in which the number will be printed, so the phrase

##H#H#
produces the right-most four digits of the phone number.
Now it'stime to insert the hyphen. Using [CHAR] we can get the code value of this ASCI|

character on the stack. The Forth word HOL D takes this ASCI| code and inserts it into the
formatted number character string.

We now have three digits |eft. We might use the phrase
###
but it is easier to simply use the word #S, which will automatically convert the rest of the number for us.

If you are more familiar with ASCII codes represented in hexadecimal form, you can use this definition instead:

HEX : .PHt <# # # # # 02D HOLD #S #> TYPE SPACE ,;
DECI MAL

Either way, the compiled definition will be exactly the same.

Now let's format an unsigned double-length number as a date, in the following form:
6/ 15/ 03

Hereisthe definition:
.DATE <# # # [CHAR] / HOLD # # [CHAR] / HOLD #S #> TYPE SPACE ;

http://home.iae.nl/users/mhx/sf7/sf7.html (9 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7
Let's follow the above definition, remembering that it is written in reverse order from the outpui.
The phrase
[CHAR] / HOLD
produces the right-most two digits (representing the year) and the right-most slash. The next
occurence of the same phrase produces the middle two digits (representing the day) and the
left-most slash. Finally #S produces the left-most two digits (representing the month).
We could have just as easily defined
[CHAR] / HOLD
asits own word and used this word twice in the definition of . DATE.

Since you have control over the conversion process, you can actually convert different digitsin
different number bases, afeature which is useful in formatting such numbers as hours and
minutes. For example, let's say that you have the time in seconds on the stack, and you want aword which will print hh:mm:ss. Y ou
might define it this way:

SEXTAL 6 BASE ! ;

:00 # SEXTAL # DECI MAL [CHAR] : HOLD ;

SEC <# :00 :00 #S #> TYPE SPACE ;

We will use theword : 00 to format the seconds and minutes. Both seconds and minutes are
modul 0-60, so the right digit can go as high as nine, but the left digit can only go up to five. Thus
in the definition of : 00 we convert the first digit (the one on the right) as a decimal number, then
go into "sextal" (base 6) and convert the left digit. Finally, we return to decimal and insert the
colon character. After : 00 converts the seconds and the minutes, #S converts the remaining
hours.

For example, if we had 4500 seconds on the stack, we would get
4500. SEC 1:15:00 ok

Table 7-2 summarizes the Forth words that are used in number formatting. (Note the "KEY" at the bottom, which serves as a
reminder of the meanings of "n," "d," etc.)

Table 7-2 -- Number Formatting

<t iy, |Beginsthe number conversion process. Expects the unsigned double-length number on
7 |the stack.
4 iy [Converts one digit and putsit into an output character string. # always produces a
i git--if you're out of significant digits, you'll still get azero for every #.
4s i, |Converts the number until the result is zero. Always produces at |east one digit (O if the
7 lvaueis zero).
Inserts, at the current position in the character string being formatted, a character
¢ HOLD whose ASCII valueis on the stack. HOLD (or aword which uses HOL D) must be used
between <# and #>.
S| GN Inserts aminus sign in the output string if the top of stack is negative. Usually used
with ROT immediately before #> for aleading minus sign.
4> iy, |Completes number conversion by leaving the character count and address on the stack
\7 (these are the appropriate arguments for TY PE).
Sack effects for number formatting
phrase stack] type of arguments
<# ... #> (ud--addr u) |double-length unsigned
_ double-length signed (where n is the high-order cell of d
<# ... ROT SIGN #>|(nd|--a0dru)| o iis the absolute value of d).

KEY
In, n1, ... |single-length signed
|d, di, ... |double-length signed

http://home.iae.nl/users/mhx/sf7/sf7.html (10 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7

u, ul, ... [single-length unsigned
addr address
c ASCII character value

Number Formatting -- Signed and Single-length

So far we have formatted only unsigned double-length numbers. The <#...#> form expects only unsigned double-length numbers, but
we can use it for other types of numbers by making certain arrangements on the stack.

For instance, let's ook at asimplified version of the system definition of D. (which prints a signed double-length number):
D. TUCK DABS <# #S ROT SIGN #> TYPE SPACE ;

The phrase ROT SIGN inserts a minus string in the character string if the third number on the stack is negative. We have prepared for
thistest by putting a copy of the high-order cell (the one with the sign bit) at the bottom of the stack, by using the word TUCK.

Because <# expects only unsigned double-length numbers, we must take the absolute value of our double-length signed number, with
the word DABS. We now have the proper arrangement of arguments on the stack for the <#...#> phrase. In some cases, such as
accounting, we may want a hegative number to be written

12345-
in which case we would place the phrase ROT SIGN at the |eft side of our <#...#> phrase, like this:
<# ROT SICN #S #>

Let's define aword which will print a signed double-length number with a decimal point and two decimal places $

to the right of the decimal. Since thisis the form most often used for writing dollars and cents, let'scall it . $ and
defineit like this:

.5 TUCK DABS <# # # [CHAR] . HOLD #S ROT SIGN [CHAR] $ HOLD #> TYPE
SPACE ;

Let'stry it:
2000. 00 . $ $2000. 00 ok

or even
2,000. 00 . $_%$2000. 00 ok

We recommend that you save . $, since we'll be using it in some future examples.

Y ou can aso write special formats for single-length numbers. For example, if you want to use an unsigned single-length number,
simply put a zero on the stack before the word <#. This effectively changes the single-length number into a double-length number
which is so small that it has hothing (zero) in the high-order cell.

To format a signed single-length number, again you must supply a zero as a high-order cell. But you must also leave a copy of the
signed number in the third stack position for ROT SIGN, and you must |eave the absolute value of the number in the second stack
position. The phrase to do all thisis

DUP ABS 0

Here are the "set-up" phrases that are needed to print various kinds of numbers:

| Number tobeprinted | Precede <# by

ouble-length, unsign nothing n
double-length igned (nothing needed)
63-bit, plus sign IBEX DA

' (to save the sign in the third stack position for ROT SIGN)

. . 0

SGEERg 1 Uz (to give adummy high-order part)
. . DUP ABS 0

31-bit, plus sign (to save the sign)

http://home.iae.nl/users/mhx/sf7/sf7.html (11 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7

Double-length Operators

Hereisalist of double-length math operators:

. Prints the signed double-length number, right-justified within the
2al% @ |(dwidth-) | i, ° o

D+ (d1d2-- d-sum) |Adds two double-length numbers.

D (d1d2-- d-diff) |Subtractstwo double-length numbers (d1-d2).

DNEGATE (d---d) Changes the sign of a double-length number.

(d1d2 -- d-max) |Returns the maximum of two double-length numbers (d1-d2).

DM N (d1d2 -- d-min) |Returns the minimum of two double-length numbers (d1-d2).

(di1d2--f) Returnstrueif d1 and d2 are equal.

(d--f) Returnstrueif dis zero.

:
S EEE|E| S| EF|E

(did2--f) Returnstrueif dl islessthan d2.

5
F

(udlud2--f) |Returnstrueif udl islessthan ud2. Both numbers are unsigned.

Theinitial "D" signifies that these operators may only be used for double-length operations, whereas theinitia "2," asin 2SWAP and
2DUP, signifies that these operators may be used either for double-length numbers or for pairs of numbers.

Here's an example using D+:
200, 000 300, 000 D+ D. 500000 ok

Mixed-length Operators

Here's atable of very useful Forth words which operate on a combination of single- and double-length numbers:

http://home.iae.nl/users/mhx/sf7/sf7.html (12 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7

Adds a double-length number to a

M+ (dn--d-sum) single-length number. Returns a
double-length result.

Divide d1 by n1, giving the symmetric
guotient n3 and the remainder n2.
Input and output stack arguments are
SM REM|(dnl--n2n3) signed. An ambiguous condition exists
if n1iszero or if the quotient lies
outside the range of a single-cell
signed integer.

Divide d1 by n1, giving the floored
quotient n3 and the remainder n2.
Input and output stack arguments are
FM MOD|(dnl--n2n3) signed. An ambiguous condition exists
if nliszeroorif the quotient lies
outside the range of a single-cell
signed integer.

Multiplies two single-length numbers.
IV (nln2--d-prod) Returns a double-length result. All
values are signed.

Multiplies a double-length number by
a single-length number and divides the
triple-length result by a single-length
number (d*n/n). Returns a
double-length result. All values are
signed.

M/ (d+nln2--d-result)

Here's an example using M+:
200, 000 7 M+ D. 200007 ok

Or, using M*/, we can redefine our earlier version of %so that it will accept a double-length argument:
% 100 M/ ;
asin
200.50 15 % D. 3007 ok
If you have loaded the definition of . $ we gave in the last Handy Hint, you can enter
200.50 15 % . $ $30. 07 ok

We can redefine our earlier definition of R¥%to get a rounded double-length result, like this:
R%o 10 ¥/ 5 M 10 SMREM NP ;

then
987.65 15 R%w . $_$30.08 ok ;-J,.

Notice that M*/ is the only ready-made Forth word which performs multiplication on a double-length
argument. To multiply 200,000 by 3, for instance, we must supply a"1" as adummy denominator:

200,000 3 1 M/ D. 600000 ok f
. i [PETE g i
since

3

1
isthe same as 3.

M*/ is also the only ready-made Forth word that performs division with a double-length result. So to divide 200,000 by 4, for
instance, we must supply a"1" as adummy numerator:

200,000 1 4 M/ D._50000 ok

http://home.iae.nl/users/mhx/sf7/sf7.html (13 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7
Numbers in Definitions

When a definition contains a number, such as
SCORE- MORE 20 + ;
the number is compiled into the dictionary in binary form, just asit looks on the stack.

1007111000

S

The number's binary value depends on the number base at the time you compile the definition. For example, if you were to enter
HEX . SCORE-MORE 14 + ; DECI MAL

the dictionary definition would contain the hex value 14, which is the same as the decimal value 20 (16+4). Henceforth,
SCORE- MORE will always add the equivalent of the decimal 20 to the value on the stack, regardless of the current number base.

If, on the other hand, you were to put the word HEX inside the definition, then you would change the number base when you execute
the definition.
For example, if you were to define:

DECI MAL
EXAMPLE HEX 20 . DECI MAL ;

the number would be compiled as the binary equivalent of decimal 20, since DECIMAL was current at compilation time.

At execution time, here's what happens:
EXAMPLE_14 ok

The number is output in hexadecimal.

For the record, a number that appears inside a definition is called a"literal." (Unlike the words in the rest of the definition which
allude to other definitions, a number must be taken literally.)

Hereisalist of the Forth words we've covered in this chapter:

Unsigned operators
U. (u--)]Prints the unsigned single-length number, followed by one space.
UMF (ulu2 - ud) Multiplies two single-length numbers. Returns a double-length result. All
values are unsigned.

UM MOD|(ud ut - u2 u3) D|V|ples adoublel_ength by asnglelength_ number. Returns a single-length
quotient and remainder. All values are unsigned.

U< (ulu2-f) Leavestrue if ul < u2, where both are treated as single-length unsigned
integers.
Number bases
HEX I(--) |[Setsthe base to sixteen.
OCTAL |(--) |[Setsthe base to eight (available on some systems).
IDECI MAL |(--) |Returnsthe baseto ten.

Number formatting operators

http://home.iae.nl/users/mhx/sf7/sf7.html (14 of 17) [2/24/2005 12:38:26 PM]

Leo Brodie's Starting Forth - Chapter 7

Begins the number conversion process. Expects the unsigned double-length number on the

<#
stack.

4 Convertsone digit and puts it into an output character string. # always produces a digit--if
you're out of significant digits, you'll still get azero for every #.

4S Converts the number until the result is zero. Always produces at least one digit (O if the value

IS zero).

Inserts, at the current position in the character string being formatted, a character whose

¢ HOLD|ASCII vaueis on the stack. HOLD (or aword which uses HOL D) must be used between <#
and #>.

Inserts aminus sign in the output string if the top of stack is negative. Usually used with ROT

shen immediately before #> for aleading minus sign.
4> Completes number conversion by leaving the character count and address on the stack (these
are the appropriate arguments for TY PE).

Sack effects for number formatting
| phrase | stack] type of arguments
|<# ... #> |(d--addru) |double-length unsigned

__ double-length signed (where n is the high-order cell of d
<# ... ROT SIGN #>|(nd|--addru)| 1 /i the absolute value of d).

Double-length operators

D+ (d1d2-- d-sum) |Adds two double-length numbers.
D (d1 d2-- d-diff) |Subtracts two double-length numbers (d1-d2).
DNEGATE|(d---d) Changes the sign of a double-length number.

IDMAX |(d1d2 -- d-max) |Returns the maximum of two double-length numbers (d1-d2).

DM N (d1d2-- d-min) |Returns the minimum of two double-length numbers (d1-d2).

D= (d1d2--f) Returnstrueif d1 and d2 are equal.

DO= |(d--f) Returnstrueif dis zero.

ID< |(d1d2--f) |Returnstrue if d1 is less than d2.

DuU< (udlud2--f) |Returns trueif udl islessthan ud2. Both numbers are unsigned.

D.R (d width --) |Prints the signed double-length number, right-justified within the field width.

Mixed-length operators

i+ (dn--d-sum)]Adds a double-length number to a single-length number. Returns a double-length result.
Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2. Input and output stack
SM REM|(dnl--n2n3) arguments are signed. An ambiguous condition exists if nl iszero or if the quotient lies outside the

range of asingle-cell signed integer.

Divide d1 by n1, giving the floored quotient n3 and the remainder n2. Input and output stack

FM MOD|(dnl--n2n3) arguments are signed. An ambiguous condition existsif nl iszero or if the quotient lies outside the
range of asingle-cell signed integer.
MK (nln2--d-prod) IMultiplies two single-length numbers. Returns a double-length result. All values are signed.

Multiplies a double-length number by a single-length number and divides the triple-length result

'y (B (2 = B by a single-length number (d*n/n). Returns a double-length result. All values are signed.

KEY
n, ni, ...|single-length signed
d, d1, ... |double-length signed
u, ul, ...|single-length unsigned
addr address
c ASCII character value

Review of Terms
. |

http://home.iae.nl/users/mhx/sf7/sf7.html (15 of 17) [2/24/2005 12:38:27 PM]

Leo Brodie's Starting Forth - Chapter 7

the process of shifting al bitsin a number, except the sign bit, to the left
Arithmetic left and right shift or right, in effect doubling or halving the (assumed signed) number,

respectively.

the process of shifting al bitsin a number, including the sign bit, to the
Logical left and right shift left or right, in effect doubling or halving the (assumed unsigned)

number, respectively.

a standarized system of representing input/output characters as byte

ASCII values. Acronym for American Standard Code for Information
Interchange. (Pronounced ask-key)

Binary number base 2.

Byte the standard term for an 8-bit value.

Cdl the Forth term for a single-cell value.

Decimal number base 10.

Hexadecimal number base 16.

L in general, a number of symbol which represents only itself; in Forth, a

iteral o A

number that appears inside a definition.

Mask avalue which can be " superimposed” over another, hiding certain bits

and revealing only those bits that we are interested in.

Number formatting the process of printing a number, usually in a special form such as

3/13/03 or $47.93.
Octal number base 8.
the bit which, for a signed number, indicates whether it is positive or
Sign bit high-order bit negative and, for an unsigned number, represents the bit of the highest
magnitude.
for any number, the number of equal absolute value but opposite sign.
Twao's complement To calculate 10 - 4, the computer first produces the two's complement of
4, (i.e., -4), then computes 10 + (-4).
Unsigned number anumber which is assumed to be positive.
Unsigned single-length number an integer which falls within the range of 0 to 2147483647.
Word In Forth, adefined dictionary entry, elsewhere, aterm for a 16-bit value.
produces a quotient g and aremainder r by dividing operand a by
Integer division operand b. Division operations return g, r, or both. The identity b*q + r

=aholdsfor al aand b.

isinteger division in which the remainder carries the sign of the divisor

or is zero, and the quotient is rounded to its arithmetic floor.

isinteger division in which the remainder carries the sign of the

Symmetric division dividend or is zero and the quotient is the mathematical quotient
"rounded towards zero" or "truncated".

Floored division

Problems -- Chapter 7

1. Veronica Wainwright couldn't remember the upper limit for a signed single-length number, and she had no book to refer to,
only a Forth terminal. So she wrote a definition called N- MAX, using a BEGIN...UNTIL loop. When she executed it, she got

2147483647 ok
What was her definition? [answer]

2. Since you now know that AND and OR employ bit logic, explain why the following example must use OR instead of +:
MATCH hunorous sensitive AND

http://home.iae.nl/users/mhx/sf7/sf7.html (16 of 17) [2/24/2005 12:38:27 PM]

Leo Brodie's Starting Forth - Chapter 7
art-1oving music-1oving OR AND
snmoki ng 0= AND
IF ." | have sonmeone you should neet " THEN ;

3. Write adefinition that "rings" your terminal’s bell three times. Make sure that there is enough of a delay between the bells so
that they are distinguishable. Each time the bell rings, the word "BEEP" should appear on the terminal screen. [answer]

4. a. Rewrite the temperature conversion definitions which you created for the problemsin Chap. 5. This time assume that the
input and resulting temperatures are to be double-length signed integers which are scaled (i.e., multiplied) by ten. For
example, if 10.5 degreesis entered, it isa 32-bit integer with avalue of 105. [answer]

b. Write aformatted output word named . DEGwhich will display a double-length signed integer scaled by ten as a string
of digits, adecimal point, and one fractional digit.

For example:

12.3 DE' 12. 3 ok

c. Solvethe following conversions:
0.0° Fin Centigrade
212.0° F in Centigrade
20.0° F in Centigrade
16.0° C in Fahrenheit
-40.00 C in Fahrenheit
100.0° K in Centigrade
100.0° K in Fahrenheit
233.0°K in Centigrade
233.0° K in Fahrenheit

5. a Write aroutine which evaluates the quadratic equation
7x2 + 20x + 5

given x, and returns a double-length result.

b. How large an x will work without overflowing sixty-four bits as a signed number?

6. Write aword which prints the numbers O through 16 (decimal) in decimal, hexadecimal, and binary form in three columns.

answer

E.g.,
DECIMAL O HEX 0 BI NARY 0
DECIMAL 1 HEX 1 BINARY 1
DECIMAL 2 HEX 2 Bl NARY 10
DECI MAL 16 HEX 10 BI NARY 10000
answer

7. If you enter

-
(two periods not separated by a space) and the system responds "ok," what does this tell you? [answer]
8. Write adefinition for a phone-number formatting word that will aso print the area code with a slash if and only if the number
includes an area code. E.g.,

555-1234 . PH# 555-1234 ok
213/ 372-8493 . PH#_213/ 372- 8493 ok

answer

you're being
counted

wac 5%

http://home.iae.nl/users/mhx/sf7/sf7.html (17 of 17) [2/24/2005 12:38:27 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf7/7-1.forth

Code from Starting Forth Chapter 7
ANSi zed by Benjami n Hoyt in 1997

problem7-1 DONT try this on a 32 bit system :)
NMAX (-- n) O BEGN 1+ DUP O< UNTIL 1- ;

http://home.iae.nl/users/mhx/sf7/7-1.forth [2/24/2005 12:38:28 PM]

http://home.iae.nl/users/mhx/sf7/7-3.forth

Code from Starting Forth Chapter 7
ANSi zed by Benjami n Hoyt in 1997

M5 (u--) DROP; \ if your systemdoesn't have M
problem 7-3)
BEEP ." BEEP " 7 EMT ; \ not ANS but works on nany systens

DELAY 500 Ms ;
RING BEEP DELAY BEEP DELAY BEEP ;

http://home.iae.nl/users/mhx/sf7/7-3.forth [2/24/2005 12:38:28 PM]

http://home.iae.nl/users/mhx/sf7/7-4.forth

Code from Starting Forth Chapter 7
ANSi zed by Benjami n Hoyt in 1997

M5 (u--) DROP; \ if your systemdoesn't have M

problem 7-4a)

F~C (fahr -- cels) -320 M+ 10 18 M/ ;
CF (cels -- fahr) 18 10 M/ 320 M+ ;
CK (cels -- kelv) 2732 M+ ;
K>C (kelv -- cels) -2732 Mt ;
F>K (fahr -- kelv) F>C CK ;
K>F (kelv -- fahr) K>C CF ;

problem 7-4b)
.DEG (d --) TUCK DABS
<# # [CHAR] . HOLD #S ROT SIGN #> TYPE SPACE ;

http://home.iae.nl/users/mhx/sf7/7-4.forth [2/24/2005 12:38:28 PM]

http://home.iae.nl/users/mhx/sf7/7-6.forth

Code from Starting Forth Chapter 7
ANSi zed by Benjami n Hoyt in 1997

BI NARY 2 BASE ! ;

problem 7-6)

3- BASES

17 0 DO CR ." decimal" DECIMAL | 4 .R 8 SPACES
"o hex " HEX I 3 .R 8 SPACES
" binary” BINARY | 8 .R 8 SPACES

LOOP DECI MAL ;

http://home.iae.nl/users/mhx/sf7/7-6.forth [2/24/2005 12:38:29 PM]

http://home.iae.nl/users/mhx/sf7/7-7 .forth

Code from Starting Forth Chapter 7
ANSi zed by Benjami n Hoyt in 1997

problem 7-7

It tells you that it's a forth which interprets any nunber

of decimal points as double specifiers. Likewise if you

enter . without the "normal" . already having been defined.)

http://home.iae.nl/users/mhx/sf7/7-7 forth [2/24/2005 12:38:30 PM]

http://home.iae.nl/users/mhx/sf7/7-8.forth

Code from Starting Forth Chapter 7
ANSi zed by Benjami n Hoyt in 1997

problem 7-8)

PHt (d--) <# #### [CHAR - HOD # # #
OVER |F [CHAR] / HOLD #S THEN #> TYPE SPACE ;

http://home.iae.nl/users/mhx/sf7/7-8.forth [2/24/2005 12:38:30 PM]

Leo Brodie's Starting Forth - Chapter 8

8 Variables, Constants, and Arrays

As we have seen throughout the previous seven chapters, Forth programmers use the stack to store numbers temporarily
while they perform calculations or to pass arguments from one word to another. When programmers need to store numbers
more permanently, they use variables and constants.

In this chapter, we'll learn how Forth treats variables and constants, and in the process we'll see how to directly access
locations in memory.

Variables

Let's start with an example of a situation in which you'd want to use a variable--to store the day's date. First we'll create a
variable called DATE. We do this by saying

VARI ABLE DATE

If today is the twelfth, we now say
12 DATE !

that is, we put twelve on the stack, then give the name of the variable, then finally execute the word !, which is pronounced
store. This phrase stores the number twelve into the variable DATE.

Conversely, we can say
DATE @

that is, we can name the variable, then execute the word @, which is pronounced fetch. This phrase fetches the twelve and
putsit on the stack. Thus the phrase

DATE @. 12 ok
prints the date.

To make matters even easier, there is a Forth word whose definition is this:
? @. ;

So instead of "DATE-fetch-dot," we can ssimply type
DATE ?_12 ok

The value of DATE will be twelve until we changeit. To change it, we simply store a new number
13 DATE ! _ok
DATE ?_13 ok
Conceivably we could define additional variables for the month and year:
VARl ABLE DATE VARI ABLE MONTH VARI ABLE YEAR
then define aword called ! DATE (for "store-the-date") like this:
IDATE YEAR ! DATE! MONTH'! ;
to be used like this:
7 31 03 ! DATE ok _
then define aword called . DATE (for "print-the-date") like this:
.DATE MONTH ? DATE ? YEAR ? ;
Y our Forth system already has a number of variables defined; oneis called BASE. BASE contains the number base that
you're currently working in. In fact, the definition of HEX and DECIMAL (and OCTAL, if your system has it) are simply

DECI MAL 10 BASE ! ;
HEX 16 BASE ! ;
OCTAL 8 BASE ! ;

http://home.iae.nl/users/mhx/sf8/sf8.html (1 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

Y ou can work in any number base by simply storing it into BASE.
For Experts

A three-letter code such as an airport terminal name, can be stored as a single-length unsigned number in base 36. For example:

: ALPHA 36 BASE ! ; ok
ALPHA ok
ZAP U. ZAP ok

Somewhere in the definitions of the system words which perform input and output number conversions, you will find the
phrase
BASE @

because the current value of BASE is used in the conversion process. Thus a single routine can convert numbersin any base.
Thisleads us to make aformal statement about the use of variables:

In Forth, variables are appropriate for any value that is used inside a
definition which may need to change at any time after the definition has
already been compiled.

A Closer Look at Variables

When you create a variable such as DATE by using the phrase
VARI ABLE DATE
you are really compiling a new word, called DATE, into the dictionary. A simplified view would look like the view below.

DATE islike any other word in your dictionary except that you defined it with the word VARIABLE
l....l instead of the word :. Asaresult, you didn't have to define what your definition would do, the word
VARIABLE itself spells out what is supposed to happen. And here is what happens:

instruction code When you say

appropriate for 12 DATE |
variables Twelve goes onto the stack, after which the text interpreter looks up DATE in the dictionary and,
space for the finding it, pointsit out to EXECUTE.
actual value .
to be stored EXECUTE executes avariable by
copying the address of the variable's
"empty" cell (where the value will go) date
onto the stack.
code for
Theword ! takesthe variables
address (on top) and
the value (underneath), Empty =2076
and stores the value cell
into that location.
Whatever number used
to be at that addressis
replaced by the new
ol number.

(To remember what
order the arguments
belong in, think of
setting down your
parcel, then sticking the address label on top.)

http://home.iae.nl/users/mhx/sf8/sf8.html (2 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

The word @ expects one argument
only: an address, which in thiscaseis

d t supplied by the name of the variable,
a e asin

DATE @

c(}dP fﬂl‘ Using the value on the stack as an
variables address, the word @ pushes the
contents of that location onto the
stack, "dropping" the address. (The

=20 76 contents of the location remain

intact.)

Using a Variable
as a Counter

In Forth, avariableisideal for
keeping a count of something. To reuse our egg-packer example, we might keep track of how many eggs go down the
conveyor belt in asingle day. (This example will work at your terminal, so enter it aswe go.)
First we can define

VARI ABLE EGGS

to keep the count in. To start with a clean slate every morning, we could store a zero into EGGS by executing a word whose
definition looks like this:

RESET 0 EGGS !

Then somewhere in our egg-packing application, we would define a word which executes the following phrase every time an
€gg passes an electric eye on the conveyor:

1 EGES +!

The word +! adds the given value to the contents of the given address. (It doesn't bother to tell you what the contents are.)
Thus the phrase

1 EGGS +!
increments the count of eggs by one. For purposes of illustration, let's put this phrase inside a definition like this:
EGG 1 EGGS +! ;

At the end of the day, we would say
EGGS ?
to find out how many eggs went by since morning.

Let'stry it:
RESET_ok
EGG ok
EGG ok
EGG ok
EGGS ?_3 ok

Here'sareview of the words we've covered in the chapter so far:

VARI ABLE XXX (-) Creates a variable named xxx; the word xxx returns its address .-L Al
xxX: (-- addr) when executed. o
! (naddr--) Storesasingle-length number into the address. ';:_'a

http://home.iae.nl/users/mhx/sf8/sf8.html (3 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

@ (addr--n) Replacesthe address with its contents. rﬁ 1&.
? (addr --) Prints the contents of the address, followed by one space. rﬁ 3\.
+! (naddr--) Addsasingle-length number to the contents of the address. rﬁ 1&.
Constants

While variables are normally used for values that may change, constants are used for values that
won't change. In Forth, we create a constant and set its value at the same time, like this: ’?’ L ’T’ M ’T’ T

220 CONSTANT LIMT

instruction code
appropriate for
constants

220

Here we have defined a constant named L1 M T, and given it the value 220. Now we can use the
word LI M T in place of the value, like this:

?2TOO-HOT LIMT > 1F ." Danger -- reduce heat " THEN ;

If the number on the stack is greater than 220, then the warning message will be printed.

Notice that when we say
LIMT
we get the value, not the address. We don't need the "fetch.”

Thisis an important difference between variables and constants. The reason for the difference is that with variables, we need
the address to have the option of fetching or storing. With constants we always want the value; we absolutely never store. (If
you really need to store anew value into a"constant”, you should usea VALUE.)

One use for constants is to name a hardware address. For example, a microprocessor-controlled portable camera application
might contain this definition:

PHOTOGRAPH SHUTTER OPEN Tl ME EXPCSE SHUTTER CLOSE ;

Here the word SHUTTER has been defined as a constant so that execution of SHUTTER returns the hardware address of the
camerads shutter. It might, for example, be defined:

HEX
FFFF3E27 CONSTANT SHUTTER
DECI MAL

The words OPEN and CLOSE might be defined simply as

CPEN 1 SWAP ! ;
CLOSE 0 SWAP ! ;

so that the phrase
SHUTTER OPEN
writesa"1" to the shutter address, causing the shutter to open.

Here are some situations when it's good to define numbers as constants:

1. When it'simportant that you make your application more readable. One of the elements of Forth styleis that
definitions should be self-documenting, asis the definition of PHOT OGRAPH above.

2. When it's more convenient to use a name instead of the number. For example, if you think you may have to change the
value (because, for instance, the hardware might get changed) you will only have to change the value once--in the file
where the constant is defined--then recompile your application.

3. (Only true for less sophisticated Forth compilers) When you are using the same value many timesin your application.
In the compiled form of adefinition, reference to a constant requires less memory space.

http://home.iae.nl/users/mhx/sf8/sf8.html (4 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

CONSTANT XXX (n -) Creates a constant named xxx with the value n; the word xxx returns n
xxX: (-- n) when executed.

Double-length Variables and Constants

Y ou can define a double-length variable by using the word 2VARIABLE. For example,
2VARI ABLE DATE

Now you can use the Forth words 2! (pronounced two-store) and 2@ (pronounced two-fetch) to access this double-length
variable. Y ou can store a double-length number into it by ssmply saying

800, 000 DATE 2!
and fetch it back with
DATE 2@ D. 800000 ok

Or you can store the full month/date/year into it, like this:
7/ 17/ 03 DATE 2!
and fetch it back with
DATE 2@ . DATE 7/ 17/ 03 ok
assuming that you've loaded the version of . DATE we gave in the last chapter.

Y ou can define a double-length constant by using the Forth word 2CONSTANT, like this:
200, 000 2CONSTANT APPLES

Now the word APPLES will place the double-length number on the stack.
APPLES D. 200000 ok

Of course, we can do:

400, 000 2CONSTANT MJCH
. MJCH MORE 200,000 D+ MJCH D+ ;

in order to be able to say
APPLES MUCH MORE D. _800000 ok

Asthe prefix "2" reminds us, we can also use 2CONSTANT to define apair of single-length numbers. The reason for putting
two numbers under the same name is a matter of convenience and of saving space in the dictionary.

As an example, recall (from Chap. 5) that we can use the phrase
355 113 */
to multiply a number by a crude approximation of 1. We could store these two integers asa 2CONSTANT as follows:
355 113 2CONSTANT PI
then simply use the phrase
Pl */
asin
10000 PI */ . _ 31415 ok

Hereisareview of the double-length data-structure words:
(d--) Creates a double-length constant named xxx with the value d;
ASONSILA N 280 xxx: (--d) theword xxx returns d when executed.

() Creates a double-length variable named xxx; the word xxx
AR HELS 20T xxX: (-- addr) returns its address when executed.

.'-ﬂ-

o

.'-ﬂ-

o

.'-_H".

o

2! (daddr--) Storesadouble-length number into the address.

http://home.iae.nl/users/mhx/sf8/sf8.html (5 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

2@ (addr--d) Returnsthe double-length contents of the address. _-ﬁl_fr';

Arrays

Asyou know, the phrase —
VARI ABLE DATE 4D A ’T E |
creates a definition which conceptually looks like that at the right.

code

Now if you say
1 CELLS ALLOT ~ roomfor a
an additional cell is allotted in the definition, like this: single-length value

Theresult isthe same as if you had used 2VARIABLE. By changing the
argument to ALLOT, however, you can define any number of variables under the same name. Such
agroup of variablesis caled an "array."

4’D’A’T’E

code For example, let's say that in our laboratory, we have not just one, but five burners that heat various
. kinds of liquids.
roomfor a
single-length We can make our word 2 TOO- HOT check that all five burners have not exceeded their individual
value limit if we defineL1 M T using an array rather than a constant.
ditto Let's give the array the name LI M TS, like this:

VARI ABLE LIMTS 4 CELLS ALLOT

The phrase "4 CELLS ALLOT" givesthe array an extrafour cells (five cellsin all).
Suppose we want the limit for burner 0 to be 220. We can store this value by

simply saying ?’ L ’T M ’T T ’S|

220 LIM TS !
because LI M TS returns the address of the first cell in the array. Suppose we code address
want the limit for burner 1 to be 340. We can store thisvalue by adding 1 CELLS —
to the address of the original cell, like this: room for burner-0's limit 3160
340 LIMTS 1 CELLS + ! room for burner-1'slimit 3164
We can store limits for burners 2, 3, and 4 by adding the "offsets' 2 CELLS, 3 room for burner-2's limit 3168
CELLS, and 4 CELLS, respectively, to the original address. We can define the oy 316C

convenient word
LIMT (burner# -- addr) CELLS LIMTS + ; |roomfor burner-4'slimit 3170

to take a burner number on the stack and compute an address that reflects the
appropriate offset.

Now if we want the value 170 to be the limit for burner 2, we simply say
170 2 LIMT !

or similarly, we can fetch the limit for burner 2 with the phrase
2 LIMT ?_170 ok

This technique increases the usefulness of theword LI M T, so that we can redefine ?TOO- HOT as follows:

?TOO-HOT (tenp burner# --)
LIMT @> IF ." Danger -- reduce heat " THEN ;

which works like this;

210 0 ?TOO- HOT ok
230 0 ?TOO- HOT_Danger -- reduce heat ok

http://home.iae.nl/users/mhx/sf8/sf8.html (6 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

300 1 ?TOO- HOT ok
350 1 ?TOO- HOT_Danger -- reduce heat ok

etc.

Another Example -- Using an Array for Counting

Meanwhile, back at the egg ranch:

Here's another example of an array. In this example, each element of the array is used as a separate counter. Thus we can
keep track of how many cartons of "extralarge" eggs the machine has packed, how many "large," and so forth.

Recall from our previous definition of EGGSI ZE (in Chap. 4) that we used four categories of acceptable eggs, plus two
categories of "bad eggs.”

CONSTANT REJECT
CONSTANT SMALL
CONSTANT MEDI UM
CONSTANT LARGE
CONSTANT EXTRA- LARGE
CONSTANT ERRCR

O WNEFO

So let's create an array that is six cells long:
VARI ABLE COUNTS 5 CELLS ALLOT

The counts will be incremented using the word +!, so we must be able to set al the elements of the array to zero before we
begin counting. The phrase

COUNTS 6 CELLS O FILL

will fill 6 cells, starting at the address of COUNTS, with zeros. If your Forth system includes the word ERASE, it's better to
useit in this situation. ERASE fills the given number of bytes with zeroes. Use it like this:

COUNTS 6 CELLS ERASE

FILL (addrnb--) Fillsnbytesof memory, beginning at the address, with value b.
ERASE (addrn--) Stores zeroes into n bytes of memory, beginning at the address.

For convenience, we can put the phrase inside a definition, like this:
RESET COUNTS 6 CELLS ERASE ;
Now let's define aword which will give us the address of one of the counters, depending on the category number it is given
(O through 5), like this:
COUNTER CELLS COUNTS + ;
and another word which will add one to the counter whose number is given, like this:
TALLY COUNTER 1 SWAP +! ;

The"1" serves as the increment for +!, and SWAP puts the arguments for +! in the order they belong, i.e., (n addr --).

Now, for instance, the phrase
LARGE TALLY
will increment the counter that corresponds to large eggs.

Now let's define a word which converts the weight per dozen into a category number:
: CATEGORY (weight -- category)

DUP 18 < IF REJECT ELSE
DUP 21 < IF SIVAL L ELSE
DUP 24 < IF VEDI UM ELSE

http://home.iae.nl/users/mhx/sf8/sf8.html (7 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

DUP 27 < IF LARGE ELSE
DUP 30 < IF EXTRA- LARGE ELSE
ERROR

()

THEN THEN THEN THEN THEN NP ;

(By the time we'll get to the NIP, we will have two values on the stack: the weight which we have been DUPping and the
category number, which will be on top. We want only the category number; "NIP" eliminates the weight.)

For instance, the phrase

25 CATEGCORY

will leave the number 3 (LARCE) on the stack. The above definition of CATEGORY resembles our old definition of
EGGSI ZE, but, in the true Forth style of keeping words as short as possible, we have removed the output messages from the
definition. Instead, we'll define an additional word which expects a category number and prints an output message, like this:

LABEL (category --)

CASE
REJECT OF ." reject " ENDOF
SMVAL L O ." small ™ ENDOF
VEDI UM OF ." medium"” ENDOF
LARGE OF ." large " ENDOF
EXTRA- LARGE OF ." extra large " ENDOF
ERRCOR O ." error " ENDOF

ENDCASE ;

For example:
SMALL LABEL_snmall ok

Now we can define EGGSI ZE using three of our own words:
EGGSI ZE CATEGORY DUP LABEL TALLY ;

Thus the phrase

23 EGGSI ZE
will print

nmedi um ok

at your terminal and update the counter for medium eggs.

How will we read the counters at the end of the day? We could check each cell in the array separately with a phrase such as
LARGE COUNTER ?

(which would tell us how many "large" cartons were packed). But let's get alittle fancier and define our own word to print a
table of the day's resultsin this format:

QUANTI TY S| ZE
1 rej ect
112 smal |
132 medi um
143 | ar ge
159 extra | arge
0 error

Since we have already devised category numbers, we can ssmply use a DO and index on the category number, like this:
REPORT (--)

PAGE . " QUANTITY SIZE" CR CR
6 0 DO | COUNTER @5 U. R
7 SPACES

http://home.iae.nl/users/mhx/sf8/sf8.html (8 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

| LABEL CR
LOOP

(Thephrase"l COUNTER @5 U. R' takesthe category number given by |, indexes into the array, and prints the contents
of the proper element in afive-column field.)

Factoring Definitions

Thisisagood time to talk about factoring as it applies to Forth definitions. We've just seen an example in which factoring
simplified our problem.

Our first definition of EGGSI ZE from Chap. 4, categorized eggs by weight and printed the name of the categories at the
terminal. In our present version we factored out the "categorizing" and the "printing" into two separate words. We can use the
word CATEGORY to provide the argument either for the printing word or the counter-tallying word (or both). And we can use
the printing word, LABEL, in both EGGSI ZE and REPORT.

As Charles Moore, the inventor of Forth, has written:

A good Forth vocabulary contains alarge number of small words. It is not enough to break a problem into small
pieces. The object isto isolate words that can be reused.

For example, in the recipe:

Get a can of tomato sauce.
Open can of tomato sauce.
Pour tomato sauce into pan.
Get can of mushrooms.
Open can of mushrooms.
Pour mushrooms into pan.

you can "factor out” the getting, opening, and pouring, since they are common to both cans. Then you can give the
factored-out process a name and simply write:

TOVATOES ADD
MUSHROOVS ADD

and any chef who's graduated from the Postfix School of Cookery will know exactly what you mean.

Not only does factoring make a program easier to write (and fix!), it saves memory space, too. A reusable word such as ADD
gets defined only once. The more complicated the application, the greater the savings.
Hereis another thought about Forth style before we leave the egg ranch. Recall our definition of EGGSI ZE

EGGSI ZE CATEGORY DUP LABEL TALLY ;

CATEGORY gave us a value which we wanted to pas on to both LABEL and TALLY, so we included the DUP. To make the
definition "cleaner," we might have been tempted to take the DUP out and put it inside the definition of LABEL, at the
beginning. Thus we might have written:

EGGSI ZE CATEGORY LABEL TALLY ;
where CATEGORY passes the value to LABEL, and LABEL passesit onto TALLY. Certainly this approach would have
worked. But then, when we defined REPORT, we would have had to say
| LABEL DROP
instead of simply
| LABEL

Forth programmers tend to follow this convention: when possible, words should destroy their own parameters. In generd, it's
better to put the DUP inside the "calling definition" (EGGSI ZE, here) than in the "called" definition (LABEL, here).

http://home.iae.nl/users/mhx/sf8/sf8.html (9 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

Another Example -- "Looping" through an Array

Wed like to introduce alittle technique that is relevant to arrays. We can best illustrate this technique by writing our own
definition of a Forth word called DUMP. DUMP is used to print out the contents of a series of memory addresses. The usage
is

addr count DUWP
For instance, we could enter

COUNTS 6 DUwWwP
to print the contents of our egg-counting array called COUNTS. Since DUMP is primarily designed as a programming tool to

print out the contents of memory locations, it prints either byte-by-byte or cell-by-cell, depending on the type of addressing
our computer uses. Our version of DUMP will print cell-by-cell.

Obviously DUMP will involve a DO loop. The question is: what should we use for an index? Although we might use the
count itself (O - 6) asthe loop index, it's better to use the address as the index.

The address of COUNTS will be the starting index for the loop, while the address plus the count will serve asthe limit, like
this:
DUWP (addr cell-count --)
CELLS OVER + SWAP
DO CRI @5 UR
1 CELLS +LOOP ;

The key phrase hereis
CELLS OVER + SWAP
which immediately precedes the DO.

The ending and starting addresses are now on the stack, ready to serve as the limit and index for
the DO loop. Since we are "indexing on the addresses,” once we are inside the loop we merely
have to say

|l @ 5 UR

to print the contents of each element of the array. Since we are examining cells (@ fetches a
single-length, single cell value), we increment the index by one cell each time, by using

1 CELLS +LOOP

Byte Arrays

Forth lets you create an array in which each element consists of a single byte rather than afull cell.
Thisisuseful any time you are storing a series of numbers whose range fits into that which can be expressed within eight
bits.

The range of an unsigned 8-bit number is 0 to 255. Byte arrays are also used to store ASCII character strings. The benefit of
using a byte array instead of a cell array isthat you can get the same amount of datain 25% (32-bit Forth) of the memory
space.
The mechanics of using a byte array are the same as using a cell array except that

1. you don't have to use CEL L S to manipulate the offset, since each element corresponds to one address unit, and

2. you must use the words C! and C@ instead of ! and @. These words, which operate on byte values only, have the
prefix "C" because their typical use is accepting ASCII characters.

Cl (baddr--) Stores an 8-bit value into the address. ':_

http://home.iae.nl/users/mhx/sf8/sf8.html (10 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8

C@ (addr--b) Fetches an 8-bit value from the address. (2

Initializing an Array

Many situations call for an array whose values never change during the operation of the application and which may as well be
stored into the array at the same time that the array is created, just as CONSTANTSs are. Forth provides the meansto
accomplish this through the two words CREATE and , (pronounced create and comma).

Suppose we want permanent valuesinour LI M TS array. Instead of saying
VARl ABLE LIM TS 4 CELLS ALLOT

we can say
CREATE LIMTS 220, 340 , 170 , 100 , 190 ,

Usually the above line would be included from a disk file, but it also works interactively.

Liketheword VARIABLE, CREATE puts anew name in the dictionary at compile time and returns the address of that
definition when it is executed. But it does not "allot" any bytes for avalue.

Theword , takes a number off the stack and storesit into the array. So each time you express a number and follow it with ,,
you add one cell to the array.

CREATE LIMITS 220, 340,

LIMITS LIMITS LIMITS

Code for Code for Code for
CREATE CREATE CREATE

dictionary 220 220

dictionary 340

dictionary

For Newcomers

Ingrained habits, learned from English writing, lead some newcomers to forget to type the final , in the line. Remember that , does
not separate the numbers, it compiles them.

Y ou can access the elements in a CREATE array just as you would the elementsin aVARIABLE array. For example:

http://home.iae.nl/users/mhx/sf8/sf8.html (11 of 14) [2/24/2005 12:38:37 PM]

Leo Brodie's Starting Forth - Chapter 8
LIMTS CELL+ @._340 ok
Y ou can even store new values into the array, just as you would into a VARIABLE array.

To initialize a byte-array that has been defined with CREATE, you can use the word C, (c-comma). For instance, we could
store each of the values used in our egg-sorting definition CATEGORY as follows:

CREATE SIZES 18 C, 21 C, 24 C, 27 C, 30 C, 255 C

Thiswould allow usto redefine CATEGORY using a DO loop rather than as a series of nested IF... THEN statements, as
follows

CATEGORY 6 0 DO DUP SIZES| + C@ < |IF DROP | LEAVE THEN LOOP ;
Note that we have added a maximum (255) to the array to simplify our definition regarding category 5.

Including the initialization of the SI ZES array, this version takes only three lines of source text as opposed to six and takes
less space in the dictionary, too.

For People Who Don't Like Guessing How It Works

Theidea hereisthis: since there are five possible categories, we can use the category numbers as our loop index. Each time around,
we compare the number on the stack against the element in SI ZES, offset by the current loop index. As soon as the weight on the
stack is greater than one of the elementsin the array, we leave the loop and use | to tell us how many times we had looped before
we "left." Since this number is our offset into the array, it will also be our category number.

Here'salist of the Forth words we've covered in this chapter:

CONSTANT XXX (n--) Creates a constant named xxx with the value n; the word xxx returns n
xxx: (--n) when executed.
(--) Creates a variable named xxx; the word xxx returns its address when
xXX: (-- addr) executed.
CREATE XXX () Creates adictionary entry (head and code pointer only) named xxx;
XXX: (-- addr) the word xxx returns its address when executed.
(naddr--) Storesasingle-length number into the address.

VARI ABLE xXXx

|
@ (addr--n) Replacesthe address with its contents.
? (addr --) Prints the contents of the address, followed by one space.
+! (naddr--) Addsasingle-length number to the contents of the address.
ALLOT (n--) Adds n bytes to the body of the most recently defined word.
: (n--) Compiles ninto the next available cell in the dictionary.
C (baddr--) Storesan 8-bit value into the address.
C@ (addr--b) Fetchesan 8-bit value from the address.
FI LL (addrnb--) Fillsn bytes of memory, beginning at the address, with value b.
BASE A variable which contains the value of the number base being used
(n--) b
y the system.

2 CONSTANT XXX (d -) Creates a double-length constant named xxx with the value d; the
xxx: (--d) word xxx returns d when executed.
(--) Creates a double-length variable named xxx; the word xxx returns its
2VARI ABLE XXX 3y (- addr) address when executed.

2! (daddr--) Storesadouble-length number into the address.

2@ (addr--d) Returnsthe double-length contents of the address.

C, (b--) Compiles b into the next available byte in the dictionary.

DUWP (addru--) Displaysu bytes of memory, starting at the address.

ERASE (addrn--) Storeszeroesinto n bytes of memory, beginning at the address.
KEY

n,nl, .. single-length signed
d,d1, .. doublelength signed
u,ul, ... single-length unsigned

http://home.iae.nl/users/mhx/sf8/sf8.html (12 of 14) [2/24/2005 12:38:38 PM]

Leo Brodie's Starting Forth - Chapter 8

ud, udl, ... double-length unsigned

addr address
c ASCII character value
b 8-bit byte
f Boolean flag
Review of Terms

9 __|]

a series of memory locations with asingle name. Values can be stored and fetched into the

individual locations by giving the name of the array and adding an offset to the address.

Constant avalue which has aname. The valueis stored in memory and usually never changes.

asit applies to programming in Forth, simplifying alarge job by extracting those elements

which might be reused and defining those elements as operations.

Fetch to retrieve avalue from a given memory location.

Initialize to give avariable (or array) itsinitial value(s) before the rest of the program begins.

Offset & number which can be added to the address of the beginning of an array to produce the
address of the desired location within the array.

Store to place avalue in agiven memory location.

Variable alocation in memory which has a name and in which values are frequently stored and fetched.
|

Array

Factoring

Problems -- Chapter 8

1. 1. Writetwo words called BAKE- PI E and EAT- PI E. The first word increases the number of available Pl ES by
one. The second decreases the number by one and thanks you for the pie. But if there are no pies, it types "What
pie?' (make sure you start out with no pies.)

EAT- Pl E_ What pi e?
BAKE- Pl E_ok
EAT- Pl E_Thank you! ok

2. Write aword called FREEZE- Pl ES which takes all the available pies and adds them to the number of piesin
the freezer. Remember that frozen pies cannot be eaten.

BAKE- Pl E BAKE- Pl E FREEZE- PI ES ok

PIES ?_0 ok
FROZEN- PI ES ?_2 ok

answer
2. Defineaword called . BASE which prints the current value of the variable BASE in decimal. Test it by first changing
BASE to some value other than ten. (Thisone istrickier than it may seem.)

DECI MAL . BASE 10_ok
HEX . BASE 16_ok

answer
3. Define a number-formatting word called M which prints a double-length number with a decimal point. The position of

the decimal point witin the number is movable and depends on the value of avariable that you will define as PLACES.
For example, if you storea"1" into PLACES, you will get

200, 000 M _20000. 0 ok

http://home.iae.nl/users/mhx/sf8/sf8.html (13 of 14) [2/24/2005 12:38:38 PM]

Leo Brodie's Starting Forth - Chapter 8

that is, with the decimal point one place from the right. A zero in PLACES should produce no decimal point at all.
answer

4. In order to keep track of the inventory of colored pencilsin your office, create an array, each cell of which contains the
count of adifferent colored pencil. Define a set of words so that, for example, the phrase

RED PENCI LS

returns the address of the cell that contains the count of red pencils, etc. Then set these variables to indicate the
following counts:

23 red pencils
15 bl ue pencils
12 green pencils
0 orange pencils
answer
5. A histogram is a graphic representation of a series of values. Each value is shown by the height or length of abar. In
this exercise you will create an array of values and print a histogram which displays aline of "*"sfor each value. First
create an array with about ten cells. Initialize each element of the array with avalue in the range of zero to seventy.

Then define aword PLOT which will print aline for each value. On each line print the number of the cell followed by
anumber of "*"sequal to the contents of that cell.

For example, if the array has four cells and contains the values 1, 2, 3 and 4, then PLOT would produce:
1 *
2 * %

3 * k%

4 *Hr**
answer

6. Create an application that displays atic-tac-toe board, so that two human players can make their moves by entering
them from the keyboard. For example, the phrase

4 X
puts an " X" in box 4 (counting starts with 1) and produces this display:

S
.
Then the phrase
3 O
putsan "O" in box 3 and prints the display:
| | O
A

Use a byte array to remember the contents of the board, with the value 1 to signify "X," a-1to signify a"O," and a0 to
signify an empty box. [answer]

you're being
counted

W I';"IE'ML

http://home.iae.nl/users/mhx/sf8/sf8.html (14 of 14) [2/24/2005 12:38:38 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf8/8-1.forth

\ Code from Starting Forth Chapter 8
\ ANSi zed by Benjam n Hoyt in 1997

(problem8-1)
VARI ABLE PIES 0 PIES !

BAKE-PIE 1 PIES +! ;

EAT-PI E

PIES @ IF -1 PIES +! ." Thank you "
ELSE ." Wat pie? "
THEN ;

VARl ABLE FROZEN-PIES 0 FROZEN-PI ES !

FREEZE-PIES PIES @ FROZEN-PIES +! 0 PIES ! ;

http://home.iae.nl/users/mhx/sf8/8-1.forth [2/24/2005 12:38:38 PM]

http://home.iae.nl/users/mhx/sf8/8-2.forth

Code from Starting Forth Chapter 8
ANSi zed by Benjami n Hoyt in 1997

problem 8-2)
.BASE BASE @ DUP DECIMAL . BASE ! ;

http://home.iae.nl/users/mhx/sf8/8-2.forth [2/24/2005 12:38:39 PM]

http://home.iae.nl/users/mhx/sf8/8-3.forth

\ Code from Starting Forth Chapter 8
\ ANSi zed by Benjam n Hoyt in 1997

(problem8-3)
VARI ABLE PLACES 2 PLACES !
M (s|d--) TUCK DABS
<# PLACES @ DUP -1 <> |IF 0 ?DO # LOOP [CHAR] . HOLD
ELSE DROP S>D

THEN
#S ROT SIGN #> TYPE SPACE ;

http://home.iae.nl/users/mhx/sf8/8-3.forth [2/24/2005 12:38:39 PM]

http://home.iae.nl/users/mhx/sf8/8-4.forth

\ Code from Starting Forth Chapter 8
\ ANSi zed by Benjam n Hoyt in 1997

(problem8-4)

CREATE #PENCI LS 4 CELLS ALLOT \ # of pencils for each col our

0 CELLS CONSTANT RED 1 CELLS CONSTANT GREEN
2 CELLS CONSTANT BLUE 3 CELLS CONSTANT ORANGE
. PENCILS (colour -- addr) #PENCILS + ;

23 RED PENCI LS ! 15 BLUE PENCILS !

12 GREEN PENCI LS ! 0 ORANGE PENCI LS !

http://home.iae.nl/users/mhx/sf8/8-4.forth [2/24/2005 12:38:40 PM]

http://home.iae.nl/users/mhx/sf8/8-5.forth

\ Code from Starting Forth Chapter 8
\ ANSi zed by Benjam n Hoyt in 1997

(problem8-5)
CREATE ' SAMPLES 10 CELLS ALLOT

STAR [CHAR] * EM T ;

STARS (#stars --) 0 ?DO STAR LOOP ;
STARS (n--) ?DUPIF STARS THEN ;
SAMPLES (sanple# -- addr) CELLS 'SAMPLES + ;

INNT-SAMPLES 10 0 DO | 6 MOD | SAMPLES ! LOCP ;
PLOT 10 0 DOCR | 2 .R SPACE | SAMPLES @ STARS LOOP CR ;

I NI T- SAMPLES

http://home.iae.nl/users/mhx/sf8/8-5.forth [2/24/2005 12:38:40 PM]

http://home.iae.nl/users/mhx/sf8/8-6.forth

\ Code from Starting Forth Chapter 8
\ ANSi zed by Benjam n Hoyt in 1997

(problem8-6)
CREATE BOARD 9 ALLOT

SQUARE (square# -- addr) BOARD + ;

CLEAR BOARD 9 ERASE ; CLEAR

BAR ." | " ;

DASHES CR 9 0 DO [CHAR] - EMT LOCP CR ;

.BOX (square# --)
SQUARE C@ DUP 0= I F 2 SPACES
ELSE DUP 1 =1F ." X"

ELSE ." O"
THEN
THEN
DROP ;
DI SPLAY (--)
CR 90DO I IF | 3 MD 0= 1|F DASHES
ELSE BAR
THEN
THEN
| . BOX

LOOP CR QUIT ;

PLAY (player square# --)
1- 0 MAX 8 MN SQUARE C ;

Xl (square# --) 1 SWAP PLAY Dl SPLAY ;
O (square# --) -1 SWAP PLAY Dl SPLAY ;

http://home.iae.nl/users/mhx/sf8/8-6.forth [2/24/2005 12:38:41 PM]

Leo Brodie's Starting Forth - Chapter 9

9 Under the Hood

Let's stop for a chapter to lift Forth's hood and see what goes on inside.

Some of the information contained herein we've given earlier, but, at the risk of redundancy, we're now going to view the Forth "machine" as awhole, to see
how it all fits together.

Inside INTERPRET

Back in the first chapter we learned that the text interpreter, whose name is INTERPRET, picks words out of the input stream and tries to find their
definitionsin the dictionary. If it finds aword, INTERPRET hasit executed.

We can perform these separate operations ourselves by using words that perform the component functions of INTERPRET. For instance, the word

(pronounced tick) finds a definition in the dictionary and returns its execution token. If we have defined GREET aswe did in Chap. 1, we can now say
GREET U. 4956608 ok

and discover the execution token of GREET (whatever it happens to be).

We may aso directly use EXECUTE. INTERPRET will execute a definition, given its execution token ("xt") on the stack. Thus we can say
' GREET EXECUTE Hello, | speak Forth ok
and accomplish the same thing asif we had merely said GREET, only in a more roundabout way.

If tick cannot find aword in the dictionary, it executes ABORT" and prints an error message.

Forth's text interpreter uses aword related to tick that returns a zero flag if the word is found. The name and usage of the word varies, but the conditional
structure of the INTERPRET phrase always looks like this:

(find the word) IF (convert to a nunber)
ELSE (execute the word)
THEN

that is, if the string is not a defined word in the dictionary, INTERPRET triesto convert it asanumber. If it isadefined word, INTERPRET executesit.

Theword ' has several uses. For instance, you can use the phrase
" CGREET .
| o | R | (%)
to find out whether GREET has been defined, without actually having to execute it (it will either print the xt or respond with an error).
Y ou can also use the xt to DUMP the contents of the definition, like this:

" GREET 12 CELLS DUwWP

A054620: 68 13 40 00 00 00 00 00 - 60 3D 03 OA 15 48 65 6C h.@.... =...Hel
A054630: 6C 6F 2C 20 49 20 73 70 - 65 61 6B 20 46 6F 72 74 lo, | speak Fort
A054640: 68 20 20 20 38 02 41 00 - 00 00 OO OO 00 00 00 00 h 8. A
ok

http://home.iae.nl/users/mhx/sf9/sf9.html (1 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9

Or you can use tick to implement something called "vectored execution.” Which brings us to the next section ...

Vectored Execution

While it sounds hairy, the idea of vectored execution isreally quite simple. Instead of executing a definition directly, as we did with the phrase
GREET EXECUTE
we can execute it indirectly by keeping its xt in a variable, then executing the contents of the variable, like this:
GREET pointer !
poi nter @ EXECUTE
The advantage is that we can change the pointer later, so that a single word can be made to perform different things at different times.

Hereis an example that you can try yourself:

(1) : HELLO ." Hello " ;

(2) : GOODBYE ." Goodbye " ;

(3) VARIABLE '"aloha ' HELLO 'al oha !
(4) : ALOHA "al oha @ EXECUTE ;

In thefirst two lines, we've ssimply created words which print the strings "Hello" and "Goodbye." In line 3, we've defined avariable called ' al oha. Thiswill
be our pointer. We've initialized the pointer with the xt of HELL Q. In line 4, we've defined the word AL OHA to execute the definition whose xtisin' al oha.
Now if we execute ALOHA, we will get

ALCHA Hell o ok

Alternatively, if we execute the phrase
' GOODBYE ' al oha !

to store the xt of GOODBYE into ' al oha, we will get
ALCHA Goodbye ok

Thus the same word, ALOHA, can do two different things.

Notice that we named our pointer ' al oha (which we would pronounce tick-aloha). Since tick provides an xt, we use it as a prefix to suggest "the xt of"
ALCHA. It isaForth convention to use this prefix for vectored execution pointers.

Tick always goes to the next word in the input stream. What if we put tick inside a definition? When we execute the definition, tick will find the next word in
the input stream, not the next word in the definition. Thus we could define

SAY ' 'aloha ! ;
then enter
SAY HELLO ok
ALOHA Hel | o ok
or

http://home.iae.nl/users/mhx/sf9/sf9.html (2 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9
SAY GOODBYE_ ok
ALOHA Goodbye ok

to store the xt of either HELLO or GOODBYE into ' al oha.

But what if we want tick to use the next word in the definition? We must use the word [] (bracket-tick-bracket) instead of tick. For example:

COMNG |['] HELLO ‘'aloha ! ;
G0 NG ['] GOODBYE 'al oha ! ;

Now we can say

COM NG ok

ALCHA Hell o ok
GO NG_ok

ALOHA Goodbye ok

Here are the commands we've covered so far:

" XXX (- addr) Attempts to find the execution token of xxx (the word that follows in the input stream) in the
dictionary. i
compiletime
['] () Used only in a colon definition, compiles the execution token of the next word in the definition asa
run time literal. i
(--addr)

The Structure of a Dictionary Entry

All definitions, whether they have been defined by :, by VARIABLE, by VALUE, by CREATE, or by any other "defining word," share these basic parts:

name field
link field
code pointer field
data field

Using the variable DATE as an example, here's how these components are arranged within each dictionary entry. In this diagram, each horizontal line
represents one cell in the dictionary:

http://home.iae.nl/users/mhx/sf9/sf9.html (3 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9

Precedence bit

(previous definition)

4| D| A [T

Name

Link
code pointer

data field

No two Forth systems are alike in this respect. There may be more basic parts, their size may differ, and the order of the components ailmost certainly differs.

In this book we're only concerned with the functions of the four components, not with their order inside a dictionary entry.

Name

In our example, the first byte contains the number of characters in the full name of the defined word (there are four letters in DATE). The next four bytes
contain the ASCI|I representations of the four lettersin the name of the defined word.

Notice the "precedence bit" in the diagram. This bit is used during compilation to indicate whether the word is supposed to be executed during compilation,
or to simply be compiled into the new definition. More on thisin Chap. 11.

Link

The"link" cell contains the address of the previous definition in the dictionary list. The link cell can be used in linearly searching the dictionary. To simplify
things a bit, imagine that it works this way:

http://home.iae.nl/users/mhx/sf9/sf9.html (4 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9

UGH

ME

CAVE

YOU

PLOW

CITY

NATION

R

CAR

CUISINART

http://home.iae.nl/users/mhx/sf9/sf9.html (5 of 16) [2/24/2005 12:38:48 PM]

Each time the compiler adds a new word to the dictionary, he sets the link field to point to the
address of the previous definition. Here heis setting the link field of CUI SI NART to point to

the definition of CAR.

At search time, tick (or
bracket-tick-bracket, etc.) starts
with the most recent word and
follows the "chain" backwards,
using the addressin each link
cell to locate the next definition
back.

Thelink field of the first
definition in the dictionary
contains a zero, which tellstick
to give up; theword isnot in the
dictionary.

Code Pointer

UGH

ME

CAVE

YOU

PLOW

CITY

NATION

CAR

CUISINART

lll_TLLLLUL

Leo Brodie's Starting Forth - Chapter 9

http://home.iae.nl/users/mhx/sf9/sf9.html (6 of 16) [2/24/2005 12:38:48 PM]

VARIABLE DATA

CONSTANT LIMIT

 EGGSIZE

VARIABLE ALOHA

VARIABLE

Rurttime code (when
executed, pushes the
address of a variable on
the stack).

" CONSTANT

Rurrtime code (when
executed, pushes the
oontents of a constant ¢
the stack).

Run-time code (when
exenuted, executes the

words that comprise the
definition).

4 D| A|T
E | 0| O |O
Linlk
code pointer
12
5 L| I |[M
I T 0 (0
Link
code pointer
220
7 E| G |G
S |1 Z | E
Link
code pointer
(rest of definition)
6 ' A |L
O | H|A |0
Linlk
code pointer

Leo Brodie's Starting Forth - Chapter 9

2AE4

Next isthe "code pointer." The xt contained in this pointer is what distinguishes a variable from a constant or a colon definition. It is the address of the
instruction that is executed first when a particular type of word is executed. Conceptually, in the case of avariable, the pointer points to code that pushes the
address of the variable on the data stack. In the case of a constant, the pointer points to code that pushes the contents of the constant on the data stack. In the
case of a colon definition, the pointer points to code that executes the rest of the words in the colon definition. In practice there are many ways to implement
this concept, including native code realizations.

The code that is pointed to is called the "run-time code" because it is used when aword of that type is executed (not when aword of that type is defined or
compiled).

All variables (conceptually) have the same code pointer; all constants have the same code pointer of their own, and so on.

Data field

Following the code pointer isthe datafield. In variables and constants, the datafield isonly one cell. Ina2VARIABLE or a2CONSTANT, the datafield is
two cells. In an array, the data field can be as long as you want it. In a colon definition, the length of the data field depends on the length of the definition, as
we'll explain in the next section. Strictly speaking, the colon definition of a modern Forth does not have a datafield.

The xt that is supplied by tick and expected by EXECUTE is the code pointer defined above. The beginning of the datafield can be found with >BODY,, a
word that computes the datafield given an xt. >SBODY does not work for colon definitions. Some Forths may even forbid the use of >BODY on any system
data structure (variables constants, user, etc.).

The Basic Structure of a Colon Definition

While the format of the head and code pointer is the same for al types of definitions, the format of the data field varies from type to type. Let's look at the
datafield of acolon definition.

The data field of a colon definition contains the xts of the previously defined words which comprise the definition. Here is the dictionary entry for the
definition of PHOTOGRAPH, which is defined as

PHOTOGRAPH SHUTTER OPEN Tl ME EXPOSE SHUTTER CLCSE ;

http://home.iae.nl/users/mhx/sf9/sf9.html (7 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9

Data
field

When PHOTOGRAPH is executed, the definitions that are pointed to by the successive xts are executed in turn.

| pl| h 0 The mechanism which reads the list of xts and executes the definitions they point to is called the "address

t o g r interpreter."

g h L] Theword ; at the end of the definition compiles the xt of aword called EXIT. Asyou can see in the figure, the
link: xt of EXIT residesin the last cell of the dictionary entry. The address interpreter will execute EXIT when it gets

code pointer

to this address, just as it executes the other words in the definition. EXIT terminates the execution of the
address interpreter, as we will seein the next section.

¢~ | addr of SHUTTER

addr of OPEN Nested Levels of Execution

addr of TIME

The function of EXIT isto return the flow of execution to the next higher-level definition that refers to the

addr of EXPOSE current definition. Let's see how thisworksin simplified terms.

addr of SHUTTER Suppose that DI NNER consists of three courses:

addr of CLOSE : DINNER SOUP ENTREE DESSERT ;

\.

addr of EXIT

and that tonight's ENTREE consists simply of

ENTREE CH CKEN RI CE ;

We are executing DI NNER and we have just finished the SOUP. The pointer

that is used by the address interpreter is called the "interpreter pointer”. Since
the next course after the SOUP is the ENTREE, our interpreter pointer is

pointing to the cell that contains the xt of ENTREE. link
The action the address interpreter performs can be seen as "subroutine calling” code for
al the xtsin the list, with the return stack used to keep return adresses, and the
EXIT working as the machine's RTS (return from subroutine) instruction. addr of SOUP
Interpreter
; addr of ENTREE
One Step Beyond Sl ‘-
Now you're of course wondering: what happens when we finally execute the addr of DESSERT
: i =
EXIT in DI NNER. Whose return address is on the return stack? What do we addr of EXIT

return to?

BID|IN[NJ|E|R|O

WEell, remember that DI NNER has just been executed by EXECUTE, which is
acomponent of INTERPRET. INTERPRET is aloop which checks the entire input stream. Assuming that we entered E after DI NNER, then there is

nothing more to interpret. So when we exit INTERPRET, where does that |eave us? In the outermost definition of each terminal , called QUIT.

QUIT, insimplified form, looks like this:
QU T BEGN

(clear return stack)
(accept input)
| NTERPRET

http://home.iae.nl/users/mhx/sf9/sf9.html (8 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9
ok " CR
AGAI N ;

(The parenthetical comments represent words and phrases not yet covered.) We can see that after the word INTERPRET comes a dot-quote message, "ok,"
and a CR, which of course are what we see after interpretation has been completed.

Next is the phrase
AGAI N
which unconditionally returns us to the beginning of the loop, where we clear the return stack and once again wait for input.

If we execute QUIT at any level of execution, we will immediately cease execution of our application and re-enter QUIT's loop. The returnstack will be
cleared (regardless of how many levels of return addresses we had there, since we could never use any of them now) and the system will wait for input. Y ou
can see why QUIT can be used to keep the message "ok from appearing at our terminal.

The definition of ABORT" uses QUIT.

Abandoning the Nest

It's possible to include EXIT in the middle of a definition. For example, if we were to redefine ENTREE as follows:
ENTREE CHI CKEN EXIT RICE ;
then when we subsequently execute DI NNER, we will exit right after CHI CKEN and return to the next course after the ENTREE, i.e., DESSERT.

EXIT iscommonly used to exit from deeply nested conditiona structures.

EXIT (--) Whencompiled within acolon definition, terminates execution at that point.
'y

QU T (--) Clearsall stacksand returns control to the terminal. No message is given.

Forth Geography

Thisisthe memory map of atypical Forth system:

http://home.iae.nl/users/mhx/sf9/sf9.html (9 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9

Low

Pre-compiled Forth

memory

System variables

Load definitions

User dictionary

e Ty

¥

PAD

I}

Parameter stack

TIB

s

Return stack

High

USER. variables

memory

Buffers

System Variables

This section of memory contains "system variables" which are created by the basic Forth
core and used by the entire system. They are not generally used by the user.

User Dictionary

The dictionary will grow into higher memory as you add your own definitions. The next
available cell in the dictionary at any time is pointed to by avariable called CP. During the
process of compilation, the pointer CP is adjusted cell-by-cell asthe entry is being added to
the dictionary. Thus CP is the compiler's bookmark; it points to the place in the dictionary
where the compiler can next compile.

CPisalso used by the word ALLOT, which advances CP by the number of bytes given.
For example, the phrase

5 CELLS ALLOT
adds twenty to CP so that the compiler will leave room in the dictionary for afive-cell
array.
A related word is HERE, which is ssimply defined as
HERE CP @;

to put the value of CP on the stack. The word , (comma), which stores a single-length value
into the next available cell in the dictionary, is simply defined

: HERE ! CELL ALLOT ;

that is, it stores a value into HERE and advances the dictionary pointer one cell to leave
room for it.

Y ou can use HERE to determine how much memory any part of your application requires, simply by comparing the HERE from before with the HERE after

compilation. For example,
HERE S"

random frt"

| NCLUDED HERE SWAP -

. 196 ok

indicates that the definitions loaded by thefiler andom f rt filled 196 bytes of memory space in the dictionary.

The Pad

At acertain distance from HERE in your dictionary, you will find asmall region of memory called the "pad." Like a scratch pad, it is usually used to hold
ASCII character strings that are being manipulated prior to being sent out to aterminal. For example, the number formatting words use the pad to hold the

ASCII numerals during the conversion process, prior to TY PE.

The size of the pad isindefinite. In most systems there are hundreds of kilobytes between the beginning of the pad and the top of the parameter stack.

Since the pad's beginning address is defined relative to the last dictionary entry, it moves every time you add a new definition or execute FORGET or
MARKER. This arrangement proves safe, however, because the pad is never used when any of these events are occurring. The word PAD returns the current

http://home.iae.nl/users/mhx/sf9/sf9.html (10 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9
address of the beginning of the pad. It is defined simply:
PAD HERE 340 + ;

that is, it returns an address that is a fixed number of bytes beyond HERE. (The actual number varies.)
Parameter Stack

Far above the pad in memory isthe areareserved for the parameter stack. Although we like to imagine that values actually move up or down somewhere as
we "pop them off" and "push them on," in reality nothing moves. The only thing that changesis a pointer to the “top" of the stack.

Asyou can see below, when we "put a number on the stack," what really happensis that the pointer is "decremented” (so that it pointsto the next available
location towards low memory), then our number is stored where the pointer is pointing. When we "remove a number from the stack," the number is fetched
from the location where the pointer is pointing, then the pointer isincremented. Any numbers above the stack pointer on our map are meaningless.

Emnpty stack After entering 1

2349 Lan 2349 2349

FHIEFTIOny

087 Stack pointer *‘- 1 1
Stack pointer *‘- 0 (| | Stack pointer *‘_ 0
E‘- 4—]| bottom S0 ?" SO ?“

As new values are added to the stack, it "grows towards low memory."

The stack pointer is fetched with the word SP@ (pronounced s-p-fetch). Since SP@ provides the address of the top stack location, the phrase
SP@ @

fetches the contents of the top of stack. This operation, of course, isidentical to that of DUP. If we had five values on the stack, we could copy the fifth one
down with the phrase

SP@4 CELLS + @
(but thisis not considered good programming practice).

The bottom of the stack is pointed to by avariable called SPO (s-p-zero). SPO always contains the address of the next cell below the "empty stack™ cell.

Notice that with double-length numbers, the high-order cell is stored at the lower memory address whether on the stack or in the dictionary. The operators
2@ and 2! keep the order of the cells consistent.

http://home.iae.nl/users/mhx/sf9/sf9.html (11 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9
Input Message Buffer

TIB contains the starting address for the "input message buffer,” or "Terminal Input Buffer," which grows towards high memory (the same direction as the
pad). When you enter text from the terminal, it gets stored into this buffer where the text interpreter will scan it.

Return Stack

Above the buffer resides the return stack, which operates identically to the parameter stack. There are no high-level Forth words analogous to SPO and SP@
that refer to the return stack.

User Variables

The next section of memory contains "user variables." These variables include BASE, SPO, and many others that we'll cover in an upcoming section.

This completes our journey across the memory map of atypical Forth system. Here are the words we've just covered that relate to memory regionsin the
Forth system:

HERE (-- addr) Returns the next available dictionary location.

PAD (-- addr) Returns the beginning address of a scratchpad area used to hold character strings for intermediate
processing. 3

SP@ (-- addr) User variable. Return the address of the top of the stack before SP@is executed.

SPO (-- addr) User variable. Contains the address of the bottom of the parameter stack.
'y

User Variables

The following list shows most of the user variables. Some we won't ever mention again. Don't try to memorize this table. Just remember where you can find

it.
@
X
—
3
-
X
—
3
-
X

TI B Contains the address of the start of the terminal input buffer.

#TI B Contains the size of the terminal input buffer.
SCR A pointer to the current block number (set by LI ST).

BASE Number conversion base.

CP Dictionary pointer. Pointer to the next available byte.

http://home.iae.nl/users/mhx/sf9/sf9.html (12 of 16) [2/24/2005 12:38:48 PM]

Leo Brodie's Starting Forth - Chapter 9

>| N A pointer to the current position in the input stream.
iy,

If non-zero, a pointer to the block being interpreted by LOAD. A zero indicates interpretation from the terminal (via
i

RN the input message buffer).

User variables are not like ordinary variables. With an ordinary variable (one defined by the word VARIABLE), the value is kept in the body of the
dictionary entry. Each user variable, on the other hand, is kept in an array called the "user table." The dictionary entry for each user variable islocated
elsewhere; its body contains an offset into the user table. When you execute the name of auser variable, such as CP, this offset is added to the beginning
address of the user table, allowing you to use @ or ! in the normal way.

The main advantage of user variablesisthat any number of tasks can use the same definition of avariable and each get its own value (because each task has
not only its own stacks, but also its own user table). Each task that executes
BASE @

gets the value for BASE from its own user table. This savesalot of room in the system while still allowing each task to execute independently.
User variables are defined by the word USER. The sequence of user variables in the table and their offset values vary from one system to another.

To summarize, there are three kinds of variables: System variables contain values used by the entire Forth system. User variables contain values that are
unique for each task, even though the definitions can be used by all tasksin the system. Regular variables can be accessible either system-wide or within a
single task only.

Here'salist of the Forth words we've covered in this chapter:

XXX (- addr) gttgmpts to find the execution token of xxx (the word that followsin the input stream) in the
ictionary. (
compiletime
['] () Used only in a colon definition, compiles the execution token of the next word in the definition as l@
run time aliteral. (
(--addr)
EXECUTE (xt--) Executes the dictionary entry whose execution token is on the stack.
'y
EXIT (-) When compiled within a colon definition, terminates execution at that point.
QT (-) Clears all stacks and returns control to the terminal. No message is given.
'y
HERE (--addr) Returnsthe next available dictionary location.
PAD (- addr) Returns_the beginning address of a scratchpad area used to hold character strings for intermediate
processing. (
SCR (--addr) User variable. A pointer to the current block number (set by LI ST).

http://home.iae.nl/users/mhx/sf9/sf9.html (13 of 16) [2/24/2005 12:38:49 PM]

Leo Brodie's Starting Forth - Chapter 9

BASE (-- addr)

SP@ (- addr)
TIB (- addr)
#TIB (- addr)
SPO (--addr)
>IN (--addr)
BLK (--addr)

Address interpreter

Body
Cfa

Code pointer field

Defining word
Head

Input message buffer
Link field
Name field

Pad

Datafield

Run-time code

User variable. Number conversion base.

User variable. Return the address of the top of the stack before SP@is executed.
User variable. Contains the address of the start of the terminal input buffer.
User variable. Contains the size of the terminal input buffer.

User variable. Contains the address of the bottom of the parameter stack.

User variable. A pointer to the current position in the input stream.

User variable. If non-zero, a pointer to the block being interpreted by LOAD. A zero indicates
interpretation from the terminal (viathe input message buffer).

EEEEERE

Review of Terms

The second of Forth's two interpreters, the one which executes the data (list of addresses, list of cals,
machine code, ...) found in the dictionary entry of a colon definition. The address interpreter also handles
the nesting of execution levels for words within words.

the code and data field of a Forth dictionary entry.

code field address; the address of adictionary entry's code pointer field.

the cell in adictionary entry which somehow points out the xt of the run-time code for this particular type of
definition. For example, in adictionary entry compiled by :, the field would point out the address
interpreter.

a Forth word which creates a dictionary entry. Examplesinclude :, CONSTANT, VARIABLE, etc.

the name and link fields of a Forth dictionary entry.

the region of memory within aterminal task that is used to store text asit arrives from the terminal.
Incoming source text is interpreted here.

the cell in adictionary entry which contains the address of the previous definition, used in searching the
dictionary.

the area of a dictionary entry which contains the name of the defined word, along with the number of
characters in the name.

the region of memory within aterminal task that is used as a scratch area to hold character strings for
intermediate processing.

the area of a dictionary entry which contains the "contents" of a definition: for a CONSTANT, the value of
the constant, for aVVARIABLE, the value of the variable; for a colon definition, the list of xts of words that
are to be executed in turn when the definition is executed.

aroutine, compiled in memory, which specifies what happens when a member of a given class of wordsis
executed. The run-time code for a colon definition is the address interpreter; the run-time code for avariable
pushes the address of the variable's body on the stack.

http://home.iae.nl/users/mhx/sf9/sf9.html (14 of 16) [2/24/2005 12:38:49 PM]

Leo Brodie's Starting Forth - Chapter 9

System variable one of a set of variables provided by Forth, which are referred to system-wide (by any task). Contrast with

"user variables.".
Task in Forth, a partition in memory that contains at minimum a parameter and a return stack and a set of user
variables.
: one of a set of variables provided by Forth, whose values are unique for each task. Contrast with "system
User variable e~

the method of specifying code to be executed by providing not the address of the code itself, but the address
Vectored execution of alocation which contains the xt of the code. This location is often called "the vector." As circumstances
change within the system, the vector can be reset to point to some other piece of code.

Problems -- Chapter 9

1. First review Chap. 2, Prob. 6. Without changing any of those definitions, write aword called COUNTS which will allow the judge to optionally enter
the number of counts for any crime. For instance, the entry

CONVI CTED- OF BOOKMAKI NG 3 COUNTS TAX- EVASI ON W LL- SERVEI,‘J 17 years ok

will compute the sentence for one count of bookmaking and three counts of tax evasion. [answer]
2. What's the beginning address of your private dictionary? [answer]
3. Inyour system, how far isthe pad from the top of your private dictionary? [answer]

4. Assuming that DATE has been defined by VARIABLE, what is the difference between these two phrases:

DATE .
and
' DATE .
What is the difference between these two phrases:
BASE .
and
BASE .
answer

5. Inthis exercise you will create a"vectored execution array,” that is, an array which contains xts of Forth words. Y ou will also create an operation word

http://home.iae.nl/users/mhx/sf9/sf9.html (15 of 16) [2/24/2005 12:38:49 PM]

Leo Brodie's Starting Forth - Chapter 9
which will execute one word stored in the array when the operation word is executed.

Define aone-dimensional array of cellswhich will return the nth element’s address when given a subscript n. Define several words which output
something at your terminal and take no inputs. Store the xts of these output words in various elements of the array. Store the address of a do-nothing
word in any remaining elements of the array. Define aword which will take avalid array index and execute the word whose address is stored in the
referenced element.

For example,

1 DO SOVETHI NG Hel l o, | speak Forth. ok
2 DOSOVETHING 1 2 345 6 7 8 9 10 ok
3 DO SOVETHI NG

R I b S b

kkkhkkkkkkhk*k
kkkikkkkkkhk*k
kkkhkkkkkkhk*k

kkkhkkkkhkkhk*k Ok

4 DO SOVETHI NG ok
5 DO SOVETHI NG_ok

[answer]

you're being
counted

W I';"IE'MI.

http://home.iae.nl/users/mhx/sf9/sf9.html (16 of 16) [2/24/2005 12:38:49 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf9/9-1.forth

Code from Starting Forth Chapter 9
ANSi zed by Benjami n Hoyt in 1997

problem 9-1)
COUNTS ' ROT ROT 0 DO OVER EXECUTE LOOP NP ;

http://home.iae.nl/users/mhx/sf9/9-1.forth [2/24/2005 12:38:49 PM]

http://home.iae.nl/users/mhx/sf9/9-2.forth

Code from Starting Forth Chapter 9
ANSi zed by Benjami n Hoyt in 1997

probl em 9-2
Find out with the phrase HERE U.)

http://home.iae.nl/users/mhx/sf9/9-2.forth [2/24/2005 12:38:50 PM]

http://home.iae.nl/users/mhx/sf9/9-3.forth

Code from Starting Forth Chapter 9
ANSi zed by Benjami n Hoyt in 1997

probl em 9-3
Find out with the phrase PAD HERE - U.)

http://home.iae.nl/users/mhx/sf9/9-3.forth [2/24/2005 12:38:50 PM]

http://home.iae.nl/users/mhx/sf9/9-4.forth

Code from Starting Forth Chapter 9
ANSi zed by Benjami n Hoyt in 1997

probl em 9-4

a> No difference.
b> Ditto, depending on how BASE was defined.)

http://home.iae.nl/users/mhx/sf9/9-4.forth [2/24/2005 12:38:51 PM]

http://home.iae.nl/users/mhx/sf9/9-5.forth

L
\ Code from Starting Forth Chapter 9
\ ANSi zed by Benjam n Hoyt in 1997

(problem9-5)
STAR [CHAR] * EMT ;

STARS (n--) 0 ?DO STAR LOOCP ;
BOX (width height --) 0 ?DO CR DUP STARS LOOP DROP ;

GREET ." Hello, | speak Forth. " ;
SEQUENCE 111 DO | . LOOP ;
TI LE 10 5 BOX ;
NOTHI NG ;
CREATE ' TO- DO " GREET , ' SEQUENCE |,
" TILE , " NOTHI NG ,
" NOTHI NG , " NOTHI NG ,

TODO (index -- addr) 0 MAX 5 MN CELLS 'TO DO + ;
DO SOVETHING (index --) TO DO @ EXECUTE ;

http://home.iae.nl/users/mhx/sf9/9-5.forth [2/24/2005 12:38:51 PM]

Leo Brodie's Starting Forth - Chapter 10

10 I/0O and You
(%)

In this chapter, we'll explain how Forth handles 1/0 of character strings to and from disk and the terminal.

Specifically, we'll discuss disk-access commands, output commands, string-manipulation commands, input commands, and number-input
conversion.

Output Operators

Theword EMIT takes asingle ASCII representation on the stack, using the low-order byte only, and prints the character at your terminal. For
example, in decimal:

65 EM T_A ok

66 EM T_B ok
Theword TY PE prints an entire string of characters at your terminal, given the starting address of the string in memory and the count, in this
form:

(addr u --)

Weve aready seen TY PE in our number-formatting definitions without worrying about the address and count, because they are automatically
supplied by #>.

Let'sgive TY PE an address that we know contains a character string. Remember that the starting address of the terminal input buffer is
returned by TIB? Suppose we enter the following command:

TIB #TI B @ TYPE

Thiswill type 15 characters from the terminal input buffer, which contains the command we just entered:
TIB #TIB @ TYPH JJ| TIB #TIB @ TYPE ok

Let's digress for amoment to look at the operation of .". At compile time, when the compiler encounters a dot-quote, it compiles the ensuing
string right into the dictionary, |etter-by-letter, up to the delimiting double-quote. To keep track of things, it also compiles the count of
charactersinto the dictionary entry. Given the definition

TEST ." sanple " ;
and looking at bytes in the dictionary horizontally rather than vertically, here is what the compiler has compiled:

l

1
4/T[E|ST| link "éﬂgg " | 7S|AIM|PLIE

If we wanted to, we could type the word " SAMPLE" ourselves (without executing TEST) with the phrase
TEST >BODY CELL+ 1+ 7 TYPE

where
TEST >BCDY
gives us the body address of TEST,
CELL+ 1+
offsets us past the address and the count, to the beginning of the string (the letter "'s"), and
7 TYPE
types the string "sample.”

That little exercise may not seem too useful. But let's go a step further.

Remember how we defined LABEL in our egg-sizing application, using nested IF... THEN statements? We can rework our definition using
TYPE. First let's make al the labels the same length and "string them together” within a single definition as a string array. (We can abbreviate
the longest label to "XTRA LRG" so that we can make each label eight characters long, including trailing spaces.)

"LABEL" ." REJECT SMALL MEDI UM LARGE XTRA LRGERROR " ;

Once we enter

http://home.iae.nl/users/mhx/sf10/sf10.html (1 of 11) [2/24/2005 12:38:57 PM]

Leo Brodie's Starting Forth - Chapter 10

"LABEL" >BODY CELL+ 1+
to get the address of the start of the string, we can type any particular label by offsetting into the array. For example, if we want label 2, we
simply add sixteen (2 x 8) to the starting address and type the eight characters of the name:
16 + 8 TYPE

Now let's redefine LABEL so that it takes a category-number from zero through five and uses it to index into the string array, like this:
LABEL 8 * ['] "LABEL" >BODY CELL+ 1+ + 8 TYPE SPACE ;

Recall that theword [isjust like" except that it may only be used inside a definition to compile the address of the next word in the definition
(inthiscase, " LABEL"). Later, when we execute LABEL, bracket-tick-bracket followed by to-body will push the body address of " LABEL"
onto the stack. The number corresponding to CEL L+ 1+ is added, then the string offset is added to compute the address of the particular |abel
name that we want.

Thiskind of string array is sometimes called a " superstring.” As a naming convention, the name of the superstring usually has quotes around
it. Note that this method isin practice never used, as the same result can be had with the completely portable ANS Forth word C", as follows:

"LABEL" C' REJECT SMALL MEDI UM LARGE XTRA LRGERROR " ;
LABEL 8 * "LABEL" 1+ + 8 TYPE SPACE ;

Our new version of LABEL will run alittle faster because it does not have to perform a series of comparison tests before it hits upon the
number that matches the argument. Instead it uses the argument to compute the address of the appropriate string to be typed.

Notice, though, that if the argument to LABEL exceeds the range zero through five, you'll get garbage. If LABEL is only going to be used
within EGGSI ZE in the application, there's no problem. But if an "end user,” meaning a person, is going to useit, you'd better "clip" the
index, like this:

LABEL 0 MAX 5 MN LABEL ;

TYPE (addru--) Transmitsu characters, beginning at address, to the current output device.

Outputting Strings from Disk

We mentioned before that the word BLOCK copies a given block into an available buffer and leaves the address of the buffer on the stack.
Using this address as a starting-point, we can index into one of the buffer's 1,024 bytes and type any string we care to. For example, to print
line O of block 1, we could say (assuming you've executed USE bl ocks. f b)

CR 1 BLOCK 64 TYP
ok

To print line eight, we could add 512 (8 x 64) to the address, like this:
CR 1 BLOCK 512 + 64 TYPE

Before we give amore interesting example, it's time to introduce aword that is closely associated with TY PE.

Eliminates trailing blanks from the string that starts at the -
- TRAI LI NG(addr ul -- addr u2) address by reducing the count from ul (original byte count) to
u2 (shortened byte count). =

-TRAILING can be used immediately before the TY PE command so that trailing blanks will not be printed. For instance, inserting it into our

first example above would give us Handy Hint
CR 1 BLOCK 64
- TRAI LI NG TYP A Random Number Generator
ok This simple random number generator can be useful for games, although for
) more sophisticated applications such as simulations, better versions are
The following example uses TY PE available.
_USE bl ocks. fb (Random nunber generation -- High level)
 POOF . VARI ABLE rnd HERE rnd !
16 CHOOSE 64 : RANDOM rnd @31421 * 6927 + DUP rnd ! ;
2 BLOCK + © CHOOSE (ul -- u2) RANDOM UM NP ;
CR 64 - TRAI LI NG
TYPE ; (where CHOOSE returns a random i nteger
try it: within the range 0 = or < u2 < ul.)

POOF Here's how to useiit:

http://home.iae.nl/users/mhx/sf10/sf10.html (2 of 11) [2/24/2005 12:38:57 PM]

Leo Brodie's Starting Forth - Chapter 10

gualified ok To choose arandom number between zero and ten (but exclusive of ten)
POOF simply enter

flexible ok 10 CHOOSE

fgj; ok and CHOOSE will leave the random number on the stack.

Internal String Operators

The commands for moving character strings or data arrays are very simple. Each requires three arguments. a source address, a destination
address, and a count.
Copies aregion of memory u bytes long, byte-by-byte beginning at
CMOVE (addrl addr2 u --) addrl, to memory beginning at addr2. The move begins with the m
contents of addr1 and proceeds toward high memory.
If uisgreater than zero, copy u consecutive characters from the data
CMOVE> (addrl addr2 u --) space starting at c-addr1 to that starting at c-addr2, proceeding m
character-by-character from higher addresses to lower addresses.
After this move, the u bytes at addr2 contain exactly what the u bytes
at addr1 contained before the move (no "clobbering” occurs).

MOVE (addrl addr2 u--)

Notice that these commands follow certain conventions we've seen before:
1. When the arguments include a source and a destination, the source precedes the destination.
2. When the arguments include an address and a count (as they do with TY PE), the address precedes the count.

And so with these three words the arguments are
(source destination count --)

To move the entire contents of a buffer into the PAD, for example, we would write
210 BLOCK PAD 1024 CMOVE

although on cell-address machines the move might be made faster if it were cell-by-cdll, like this:
210 BLOCK PAD 1024 MOVE

The word CMOVE> lets you move a string to aregion that is higher in memory but that overlaps the source region.

. If you were to use CMOVE, thefirst letter of the string would get copied to the second .
LEing CMOVE — Jbyte, but that would "clobber" the second letter of the string. Thefinal result would bea | Using CMOVE >
string composed of a single character.

Using CMOVE> in this situation keeps the string from clobbering itself during the Il
move. 2|3

H E L P
Y ou probably notice that CMOVE can be used to fill an array with a certain byte. On
older systems the word FILL, which we introduced earlier, may have been defined using I---f‘g
this trick. On modern Forthsiit is recommended to explicitly use FILL, if fill iswhat you HEE]E S
want to do. For example, to store blanks into 1024 bytes of the pad, we say IRV E

PAD 1024 CHAR BL FILL H E L L P
T 70 [

Single-character Input

Theword KEY awaits the entry of asingle key from your terminal keyboard and leaves
the character's ASCII equivalent on the stack in the low-order byte.

To execute it directly, you must follow it with areturn, like this:

e[

The cursor will advance a space, but the terminal will not print the "ok"; it iswaiting for your input. Pressthe letter "A," for example, and the
screen will "echo" the letter "A," followed by the "ok." The ASCII valueis now on the stack, so enter .

KEY A ok
. 65 ok

This saves you from having to look in the table to determine a character's ASCII code.

http://home.iae.nl/users/mhx/sf10/sf10.html (3 of 11) [2/24/2005 12:38:57 PM]

Leo Brodie's Starting Forth - Chapter 10

You can aso include KEY inside a definition. Execution of the definition will stop, when KEY is encountered, until an input character is
received. For example, the following definition will list a given number of blocks in series, starting with the current block, and wait for you to
press any key before it lists the next one:
BLOCKS (count --)
SCR @+ SCR @DO | LIST KEY DROP LOCP ;

In this case we drop the value left by KEY because we don't care what it is.

Or we might add a feature that allows us either to leave the loop at any time by pressing return or to continue by pressing any other key, such
as as space. In this case we will perform a conditional test on the value returned by KEY .

13 CONSTANT #EQOL
BLOCKS (count --)

SCR @ +
SCR @ DO | LIST
KEY #EOL = (cr) |IF LEAVE THEN
LOCP ;

Note that in some Forth systems, the carriage-return key is received as alinefeed (10) or as anull (zero).

KEY (-- ¢) Returnsthe ASCII value of the next available character from the current input device.
Ay

String Input Commands, from the Bottom up

There are several words involved with string input. We'll start with the lower-level of these and proceed to some higher-level words. Here are
the words we will cover in this section:

Receives u characters (or a carriage return) from the terminal -

ACCEPT (c-addr ul -- u2) keyboard and stores them, starting at the address. The count of
received charactersis returned. =
Reads one word from the input stream, using the character (usually —

WORD (c--addr) blank) as a delimiter. Moves the string to the address (HERE) with the
count in the first byte, leaving the address on the stack. =

Theword ACCEPT stops execution of the task and waits for input from your keyboard. It expects a given number of keystrokes or a carriage
return, whichever comes first. The incoming text is stored beginning at the address given as an argument, the count of received charactersis
returned on the stack.
For example, the phrase

TI B 80 ACCEPT
will await up to eighty characters and store them in the Terminal Input Buffer (TIB). (Storing directly in the TIB is not standard, but e.g.
iForth has no problem with this tradition.)
This phraseis the one used in the definition of QUIT to get the input for INTERPRET.

Let's move on to the next higher-level string-input operator. We've just explained that QUIT contains the phrase

TIB 80 ACCEPT #TIB ! | NTERPRET ...
but how does the text interpreter scan the terminal input buffer and pick out each individual word there? With the phrase
BL WORD

WORD scans the input stream looking for the given delimiter, in this case space, and moves the sub-string into a different buffer of its own,
with the count in the first byte of the buffer. Finally, it leaves the address of the buffer on the stack, so that INTERPRET (or anyone else)
knows where to find it. WORD's buffer usually begins at HERE, so the address given is HERE.

WORD looks for the given delimiter in the terminal input buffer, and moves the sub-string to WORD's buffer with the count in the first byte.

When you are executing words directly from aterminal, WORD will scan the input buffer, starting at TIB. Asit goes aong, it advances the
input buffer pointer, called >IN, so that each time you execute WORD, you scan the next word in the input stream. WORD knows to stop
scanning when >IN @ becomes larger than #TI1B @, the count of received characters.

>IN isa"relative pointer”; that is, it does not contain the actual address but rather an offset that is to be added to the actual address, whichisis
in this case TIB. For example, after WORD has scanned the string "STAR," the value of >IN isfive.

http://home.iae.nl/users/mhx/sf10/sf10.html (4 of 11) [2/24/2005 12:38:57 PM]

Leo Brodie's Starting Forth - Chapter 10

Input Message Buffer

IMB IMB + >IN

WORD ignoresinitial occurences of the delimiter (until any other character is encountered). Y ou could type
o0 000 STAR
(that is, STAR preceded by severa spaces) and get exactly the same string in WORD's buffer as shown above.
Well get back to WORD later on in this chapter. For now, though, let's define aword that uses WORD and that is more useful for handling
string input:
TEXT (delimiter --) PAD 258 BL FILL WORD COUNT PAD SWAP MOVE ;
TEXT, like WORD, takes a delimiter and scans the input stream until it finds the string delimited by it. It then moves the string to the pad.

What is especially nice about TEXT isthat before it moves the string, it blanks the pad. This makesit very convenient for use with TY PE.
Here's asimple example:

CREATE ny-nanme 40 ALLOT
I'M BL TEXT PAD ny-name 40 MOVE ;
In thefirst line we define an array called my- nane. In the second line we defineaword called | ' Mwhich will alow us to enter
"M EDWARD_ok

The definition of 1 ' Mbreaks down as follows: the phrase
BL TEXT
scans the remainder of the input stream looking for a space or the end of the line, whichever comesfirst. (The delimiter that we give to TEXT
is actually used by WORD, which isincluded in the definition of TEXT.) TEXT then moves the phrase to a nice clean "pad.”
The phrase
PAD ny-nane 40 MOVE
moves forty bytes from the pad into the array called ny- nane, whereit will safely stay for aslong as we need it.

We could now define GREET asfollows:
GREET ." Hello, " ny-name 40 -TRAILING TYPE ." , | speak Forth. " ;
so that by executing GREET, we get
GREET Hell o, EDWARD, | speak Forth. ok

Unfortunately, our definition of | ' Mislooking for a space as its delimiter. This means that a person named Mary Kay will not get her full
nameinto nmy- nane.

To get the complete input stream, we don't want to "see" any delimiter at all, except the end of line. Instead of " BL TEXT, " we should use
the phrase
1 TEXT

ASCII 1isacontrol character that can't be ever sent from the keyboard and therefore won't ever appear in the input buffer. Thus" 1 TEXT"
is aconvention used to read the entire input buffer, up to the carriage return. By redefining | * Min thisway, Mary Kay can get her nameinto
nmy- nane, space and all.

By using other delimiters, such as commas, we can "accept" a series of strings and store each of them into a different array for different
purposes. Consider this example, in which the word VI TALS uses commas as delimiters to separate three input fields:

(Formlove letter)

CREATE name 14 ALLOT
CREATE eyes 12 ALLOT

http://home.iae.nl/users/mhx/sf10/sf10.html (5 of 11) [2/24/2005 12:38:57 PM]

Leo Brodie's Starting Forth - Chapter 10
CREATE e 14 ALLOT

VI TALS
[CHAR] , TEXT PAD nane 14 MOVE
[CHAR] , TEXT PAD eyes 12 MOVE
1 TEXT PAD me 14 MOVE ;

LETTER PAGE
Dear " name 14 -TRAILING TYPE ." ,"

CR ." | go to heaven whenever | see your deep "
eyes 12 -TRAILING TYPE ." eyes. Can "

CR ." you go to the novies Friday? "

CR 30 SPACES ." Love,

CR 30 SPACES ne 14 - TRAI LI NG TYPE

CR." P.S. Wear sonething " eyes 12 -TRAILING TYPE

to show of f those eyes!

Which alows you to enter

VI TALS Alice, bl ue, Fred ok
then enter

LETTER

It works every time.

So far al of our input has been "Forth styl€"; that is, numbers precede commands (so that a command will find its number on the stack) and
strings follow commands (so that a command will find its string in the input stream). This style makes use of one of Forth's unique features: it
awaits your commands; it does not prompt you.

But if you want to, you may put ACCEPT inside adefinition so that it will request input from you under control of the definition. For
example, we could combine the two words | * Mand GREET into a single word which "prompts"’ users to enter their names. For example,

GREET _
What's your nane?

at which point execution stops so the user can enter a name:
GREET _

VWhat's your nanme? Travis M Gee
Hello, Travis Mc Gee, | speak Forth. ok

We could do this as follows:

CGREET CR ." What's your nanme?"
TIB 40 ACCEPT #TIB! 0 >IN
1 TEXT CR ." Hello,
PAD 40 -TRAILING TYPE ." , | speak Forth. " ;

Weve explained all the phrasesin the above definition except this one:
#TIB! 0 >IN!

Remember that TEXT, because it uses WORD, always uses >IN asits reference point. But when the user enters the word GREET to execute
this definition, the string GREET will be stored in the terminal input buffer and >IN will be pointing beyond " GREET" . ACCEPT does not
use >IN asitsreference, so it will store the user's name beginning at TIB, on top of GREET. If you were to execute TEXT now, it would miss
the first five letters of the user's name. It's necessary to reset >IN to zero so that TEXT will look where ACCEPT has put the name.

Number Input Conversion

When you type a number at your terminal, Forth automatically converts this character string into a binary value and pushes it onto the stack.
Forth also provides a command which let you convert a character string that begins at any memory location into a binary value.

http://home.iae.nl/users/mhx/sf10/sf10.html (6 of 11) [2/24/2005 12:38:58 PM]

Leo Brodie's Starting Forth - Chapter 10

ud2 is the unsigned result of converting the characters within the
string specified by c-addrl ul into digits, using the number in
BASE, and adding each into udl after multiplying udl by the

(ud1 c-addri ul -- number in BASE. Conversion continues | eft-to-right until a —
>NUVBER ud2 c-addr2 u2) character that is not convertible, including any "+" or "-", is
encountered or the string is entirely converted. c-addr2 is the .

location of thefirst unconverted character or the first character past
the end of the string if the string was entirely converted. u2 isthe
number of unconverted charactersin the string.

Here's an example that uses >NUMBER:
PLUS 0. BL WORD COUNT >NUMBER 2DROP DROP + ." =" . ;

PLUS allows usto prove to any skeptic that Forth could use infix notation if it wanted to. We can enter
2 PLUS 13 = 15 ok

When PLUS is executed, the "2" will be put on the stack in binary form, while the "3" will still bein the input stream as a string. The phrase
0. BL WORD

reads the string and provides the accumulator for >NUMBER; >NUMBER convertsit to binary and puts the double-length result plus an
unconverted string on the stack. We drop the string and the top half of the double-length result. Now + adds the two single-length values and .
prints the result.

Note that you can use >NUMBER to create your own specialized number input conversion routines. Since >NUMBER returns the address of
the first unconvertible character, you can make decisions based on whether the character is a hyphen, dot, or whatever. Y ou can also make
decisions based on the location of the non-convertible character within the number. For instance, you can write a routine that lets you enter a
number with adecimal point in it and then scalesit accordingly.

To give agood example of the use of >NUMBER, Figure 10-1 shows a definition of NUMBER. This version reads any of the characters
T |
as valid punctuation marks which cause the value to be returned on the stack as a double-length integer. If none of these characters appear in

(%)

Here we use the variable PUNCT to contain aflag that indicates whether punctuation was encountered. We suggest that you use an available
user variable instead.

the string, the value is returned as single-length. This definition uses the word WITHIN as we defined it in the problems for Chap. 4.

Figure 10-1. A Definition of NUMBER
Creates aflag that will
contain true if the
number contains valid
punctuation.

VARI ABLE punct

NUMBER (addr u -- n or d)
Initialize flag, no
0 punct ! punctuation has
occured.
OVER C@ Get the first digit.
[CHAR] - = Isit aminus sign?
Save the flag on the
DUP >R return stack.
If the first character is
"-" adds 1 to the
address and
decrements the
character count. This
effectively skipsthe
"-" character, pointing
totheredl first digit.
provides the
0. 2SWAP double-length zero as
an accumul ator.

IF 1 /STRING THEN

BEG N

http://home.iae.nl/users/mhx/sf10/sf10.html (7 of 11) [2/24/2005 12:38:58 PM]

Leo Brodie's Starting Forth - Chapter 10

Begins conversion;

>NUMBER converts until an
invalid digit.
While there are still
DUP characters | eft, fetch
theinvalid digit.
VWA LE
OVER C@DUP [CHAR] : = acolon, or

acomma, hyphen,
period or slash.
Set punct toindicate
whether valid
punctuation has
occurred.
Otherwise issue an
error message.
Skip the punctuation
character.
Exits hereif ablank is
REPEAT detected; otherwise
repeats conversion.
Drop the string from
the stack.
If the flag on the return
stack istrue, negates d.
If there was no
punctuation, returns a
punct @0= |F DROP THEN ; single-length value by
dropping the
high-order cell.

SWAP [CHAR] , [CHAR] / 1+ WTHIN OR
DUP punct !

0= ABORT" ? "

1 / STRI NG

2DROP

R> |F DNEGATE THEN

A Closer Look at WORD

So far we have only talked about using WORD to scan the terminal input buffer (which holds the characters that are ACCEPTed from the
terminal). But if we recall that the phrase

BL WORD
is used by the text interpreter, we realize that WORD actually scans the input stream, which is either the terminal input buffer, a string being
EVALUATEC, or disk memory being LOADed or INCLUDED.

To achieve this flexibility, WORD uses other pointersin addition to >IN. The other pointers make sure WORD looks in memory (when doing
EVALUATE), on disk (when doing LOAD or INCLUDED) or in the terminal input buffer.

A useful word to use in conjunction with WORD is COUNT. Recall that WORD leaves the length of the word in the first byte of WORD's
buffer and also leaves the address of this byte on the stack.

| s{H]e[L|L|o

N\

BHENAR

leaving the stack with a string address and a count as appropriate arguments for TY PE, MOVE, etc.

http://home.iae.nl/users/mhx/sf10/sf10.html (8 of 11) [2/24/2005 12:38:58 PM]

Leo Brodie's Starting Forth - Chapter 10
COUNT isused in the definition of TEXT which we gave afew sections back.

Converts a character string, whose length is contained in itsfirst byte, ——
COUNT (addr -- addr+1 u) into the form appropriate for TY PE, by leaving the address of the first l@
character and the length on the stack. .

We will further illustrate the use of WORD in one of the examplesin Chap. 12.

String Comparisons

Here is a Forth word that you can use to compare character strings:

Compare the string specified by c-addrl and ul to the string specified

by c-addr2 and u2. The strings are compared, beginning at the given
addresses, character by character up to the length of the shorter string,

or until adifferenceisfound. If both strings are the same up to the -
length of the shorter string, then the longer string is greater than the
shorter string. nis-1if the string specified by c-addrl and ul is less =
than the string specified by c-addr2 and u2. nis zero if the strings are

equal. nis1if the string specified by c-addrl and ul is greater than

the string specified by c-addr2 and u2.

E (c-addrl ul

SR c-addr2 u2--n)

COMPARE can be used to test whether two character strings are equal or whether one is alphabetically greater or lesser than the other.

Here'salist of the Forth words we've covered in this chapter:

TYPE (addru--) Transmits u characters, beginning at address, to the current l@
output device. 5

Eliminates trailing blanks from the string that starts at the -
- TRAI LI NG(addr ul -- addr u2) address by reducing the count from ul (original byte count) to
u2 (shortened byte count). -
After this move, the u bytes at addr2 contain exactly what the —
MOVE (addrladdr2u--) ubytesat addrl contained before the move (no "clobbering" l@
occurs). =
Copies aregion of memory u byteslong, byte-by-byte
beginning at addrl, to memory beginning at addr2. The move [F
CHONE (ERerl gERlZ) begins with the contents of addr1 and proceeds toward high
memory.
Returns the ASCI| value of the next available character from
the current input device. i
Recelves u characters (or a carriage return) from the terminal —
ACCEPT (c-addrul--u2) keyboard and storesthem, starting at the address. The count of l@
received characters is returned. .
Reads one word from the input stream, using the character

KEY (--c)

N (usualy blank) as a delimiter. Moves the string to the address l’a
WORD (¢ --adar) (HERE) with the count in the first byte, leaving the address on {:
the stack.

ud2 is the unsigned result of converting the characters within
the string specified by c-addrl ul into digits, using the number
in BASE, and adding each into udl after multiplying udl by
the number in BASE. Conversion continues left-to-right until a —
character that is not convertible, including any "+" or "-", is l@
encountered or the string is entirely converted. c-addr2 is the =
location of the first unconverted character or the first character
past the end of the string if the string was entirely converted.
u2 is the number of unconverted charactersin the string.
Converts a character string, whose length is contained in its —
COUNT (addr-- addr+1u) first byte, into the form appropriate for TY PE, by leaving the
address of the first character and the length on the stack. 2
If uisgreater than zero, copy u consecutive characters from
the data space starting at c-addrl to that starting at c-addr2, 7
anovs (el ged 2] proceeding character-by-character from higher addresses to
lower addresses.

R (udl c-addrl ul --

>NUMBER 12 c-addr2 u2)

http://home.iae.nl/users/mhx/sf10/sf10.html (9 of 11) [2/24/2005 12:38:58 PM]

Leo Brodie's Starting Forth - Chapter 10

Compare the string specified by c-addrl and ul to the string

specified by c-addr2 and u2. The strings are compared,

beginning at the given addresses, character by character up to

the length of the shorter string, or until a differenceis found. If
£ (c-addrl ul both strings are the same up to the length of the shorter string, l’a

c-addr2u2--n) thenthelonger string is greater than the shorter string. nis-1

if the string specified by c-addrl and ul is less than the string

specified by c-addr2 and u2. nis zero if the strings are equal. n

is 1if the string specified by c-addrl and ul is greater than the

string specified by c-addr2 and u2.

COVPAR

A

BLANK (addru--) Store ASCII blanks into u bytes of memory, beginning at addr.
Review of Terms
|
Relative pointer A variable which specifies alocation in relation to the beginning of an array or

string--not the absolute address.

in Forth, a character array which contains a number of strings. Any one string may be
accessed by indexing into the array.

the treatment of mass storage (such as the disk) as though it were resident memory; also
the mechanism of the operating system which makes this treatment possible.

Superstring

Virtual memory

Problems -- Chapter 10

1. Enter some famous quotations into an available block, say 3. Now define aword called CHANGE which takes two ASCII values and
changes all occurrences within block 3 of the first character into the second character. For example,

CHAR A CHAR E CHANGE
will change al the"A"sinto "E"s. [answer

2. Define aword called FORTUNE which will print a prediction at your terminal, such as"Y ou will receive good news in the mail." The
prediction should be chosen at random from alist of sixteen or fewer predictions. Each prediction is sixty-four characters, or less, long.
answer

3. According to Oriental legend, Buddha endows al persons born in each year with special, helpful characteristics represented by one of
twelve animals. A different animal reigns over each year, and every twelve years the cycle repeats itself. For instance, persons bornin
1900 are said to be born in the Y ear of the Rat." The art of fortune-telling based on these influences of the natal year is called
"Juneeshee."

Here isthe order of the cycle:
Rat Ox Tiger Rabbit Dragon Snake Horse Ram Monkey Cock Dog Boar

Writeaword called . ANI MAL that types the name of the animal corresponding to its position in the cycle as listed here; e.g.,
0 . ANl MAL_RAT ok

Now write aword called (JUNEESHEE) which takes as an argument a year of birth and prints the name of the associated animal.
(1900 isthe year of the Rat, 1901 is the Ox, €tc.)

Finally, write aword called JUNEESHEE which prompts the user for his/her year of birth and prints the name of the person's Juneeshee
animal. Define it so that the user won't have to press "return” after entering the year. [answer]

4. Rewrite the definition of LETTER that appears in this chapter so that it uses names and personal descriptions that have been edited into
ablock, rather than entered into character arrays. In this way, you can keep afile on many "prospects' and produce a letter for any one
person with the appropriate descriptions, just by supplying an argument to LETTER, asin

1 LETTER

http://home.iae.nl/users/mhx/sf10/sf10.html (10 of 11) [2/24/2005 12:38:58 PM]

Leo Brodie's Starting Forth - Chapter 10

Now define LETTERS so that it prints one letter for each person in your file.

5. Inthisexercise you will create and use avirtua array, that is, an array which resides on disk but which is referenced like a
memory-resident array (with @ and !).

First select an unused block. Put this block number in avariable. Then define an access word which accepts a cell subscript from the
stack, then computes the block number corresponding to this subscript, calls BLOCK and returns the memory address of the subscripted
cell. This access word should also call UPDATE. Test your work sofar.

Next use thefirst cell as acount of how many dataitems are stored in the array. Define aword PUT which will store avalueinto the
next available cell of the array. Define a display routine which will print the stored elementsin the array.

Now use this virtual array facility to define aword ENTER which will accept pairs of numbers and store them in the array.

Finally, define TABLE to print the data entered above, eight members per line. [answer

you're being
counted

W3C 32y

http://home.iae.nl/users/mhx/sf10/sf10.html (11 of 11) [2/24/2005 12:38:58 PM]

http://validator.w3.org/

—— —

AN

http://home.iae.nl/users/mhx/sf10/10-1.forth

10- 2. FORTH - - - - mmm o m oo o oo oo oo oo
Code from Starting Forth Chapter 10

ANSi zed by Benjami n Hoyt in 1997

BOUNDS suggest ed by Sanmuel Tardieu in 2003

problem 10-1)

Renenber, we assune 1 CHARS == 1 byte)

BOUNDS (addr size -- addr+size addr) OVER + SWAP ;

CHANGE (charl char2 --)

3 BLOCK 1024

BOUNDS DO OVER | C@=1F DUP | C' UPDATE THEN
LOOP 2DROP ;

http://home.iae.nl/users/mhx/sf10/10-1.forth [2/24/2005 12:38:58 PM]

—— —

'OA

http://home.iae.nl/users/mhx/sf10/10-2.forth

Code from Starting Forth Chapter 10
ANSi zed by Benjami n Hoyt in 1997
assune 1 CHARS == 1 byte / address unit

problem 10-2)

CONSTANT FORTUNES \ change this to block # with fortunes
FORTUNE CR 16 CHOOSE [64] LITERAL *

FORTUNES BLOCK + 64 -TRAILING TYPE SPACE ;

http://home.iae.nl/users/mhx/sf10/10-2.forth [2/24/2005 12:38:59 PM]

—— —

http://home.iae.nl/users/mhx/sf10/10-3.forth

Code from Starting Forth Chapter 10
ANSi zed by Benjami n Hoyt in 1997
assune 1 CHARS == 1 byte / address unit

probl em 10-3)
ANI MALS (-- addr)
C' rat 0X ti ger rabbitdragonsnake horse ram nonkeycock dog boar

ANLMAL (index --)
6 * AN MALS 1+ + 6 -TRAILING TYPE ;

(JUNEESHEE) (year --)

1900 - 12 MDD ." You were born in the year of the "
.ANTMAL [CHAR] . EMT CR;

DAT (-- digit) KEY DUP EMT [CHAR O - ;

YEAR (-- year) (lets hope he types in proper digits!)
0O 40DO 10 * DGAT + LOCP ;

JUNEESHEE
CR ." In what year were you born? " YEAR CR (JUNEESHEE) ;

http://home.iae.nl/users/mhx/sf10/10-3.forth [2/24/2005 12:38:59 PM]

http://home.iae.nl/users/mhx/sf10/10-5.forth

\ Code from Starting Forth ter 10
\ ANSi zed by Benjam n Hoyt in 1997

(problem 10-5)
VARI ABLE stuff 3 stuff | \ first block of file

USED (-- addr) stuff @ BLOCK UPDATE ;

ELEMENT (index -- addr) CELLS 1024 /MOD stuff @ + BLOCK + UPDATE ;
NI T-ARRAY 600 O DO | | ELEMENT ! LOOP ;

. ARRAY 600 0 DO | 4 .R SPACE | ELEMENT ? LOCP ;

ELEMENT (index -- addr) 1+ CELLS 1024 /MOD stuff @ + BLOCK + UPDATE ;

NO- STUFF 0 USED ! ; NO STUFF

PUT (n--) USED @ ELEMENT ! 1 USED +! ;

ENTER (nl1 n2 --) SWAP PUT PUT ;

TABLE CR USED@ 0 ?DO | 8 MDD 0=1F CR THEN | ELEMENT @ 8 .R LOOP CR;

http://home.iae.nl/users/mhx/sf10/10-5.forth [2/24/2005 12:39:00 PM]

Leo Brodie's Starting Forth - Chapter 11

11 Extending the compiler: Defining words and
Compiling words

In comparison with conventional languages, Forth's compiler is completely backwards. Traditional compilers are huge
programs designed to translate any foreseeable, legal combination of available operators into machine language. In
Forth, however, most of the work of compilation is done by a single definition, only afew lineslong. Special structures
like conditionals and loops are not compiled by the compiler but by the words being compiled (IF, DO, etc.)

Lest you scoff at Forth's simple ways, notice that Forth is unique among languages in the ease with which you can
extend the compiler. Defining new, specialized compilersis as easy as defining any other word, as you will soon see.

When you've got an extensible compiler, you've got a very powerful language!

Just a question of time

Before we get fully into this chapter, let's review one particular concept that can be a problem to beginning Forth
programmers. It's a question of time.

We have used the term "run time" when referring to things that occur when aword is executed and "compile time" when
referring to things that happen when aword is compiled. So far so good. But things get a little confusing when asingle
word has both a run-time and a compile-time behavior.

In general there are two classes of words which behave in both ways. For purposes of this discussion, we'll call these two
classes "defining words" and "compiling words."

A defining word is aaword which, when executed, compiles a new definition. A defining word specifies the
compile-time and run-time behavior of each member of the "family" of words that it defines. Using the defining word
CONSTANT as an example, when we say

80 CONSTANT MARG N

we are executing the compile-time behavior of CONSTANT; that is, CONSTANT is compiling a new constant-type
dictionary entry called MARG N and storing the value 80 into its parameter field. But when we say

MARG N

we are executing the run-time behavior of CONSTANT; that is, CONSTANT is pushing the value 80 onto the stack.
WE'll pursue defining words further in the next few sections.

The other type of word which possesses dual behavior is the "compiling word." A compiling word is aword that we use
inside a colon definition and that actually does something during compilation of that definition.

One exampleistheword .", which at compile time compiles atext string into the dictionary entry with the count in front,
and at run time typesit. Other examples are control-structure words like |F and LOOP, which aso have compile-time
behaviors distinct from their run-time behaviors. We'll explore compiling words after we've discussed defining words.

How to Define a Defining Word

Here are the standard Forth defining words we've covered so far:

http://home.iae.nl/users/mhx/sf11/sf11.html (1 of 15) [2/24/2005 12:39:06 PM]

Leo Brodie's Starting Forth - Chapter 11

VARI ABLE
2VARI ABLE
CONSTANT
2CONSTANT
CREATE

What do they all have in common? Each of them is used to define a set of words with similar compile-time and run-time
characteristics.

- : Let'ssay you'rein
. the ceramic
J salt-shaker
==
enough salt
1. How the mold will work. (E.g., how will you get the clay into and out of the mold without breaking the mold or

And how are all these defining words defined? First we'll answer this question metaphorically.
business. If you
plan to make
shakers, you'll find it's easiest to make amold first. A mold will guarantee that all your shakers will be of the same
design, while allowing you to make each shaker a different color. In making the mold, you must consider two things:
letting the seams show?)
2. How the shaker will work. (E.g., how many holes should there be? How much salt should it hold? Etc.)

To bring this analogy back to Forth, the definition of a defining word must specify two things: the compile-time behavior
and the run-time behavior for that type of word.

Hold that thought a moment while we look at the most basic of the defining words in the above list: CREATE. At
compile time, CREATE takes a name from the input stream and creates a dictionary heading for it.

At run time, CREATE pushes the body address of EXAMPLE onto the stack.

7’E’X’A’M’P’L’E

What happens if we use CREATE inside a definition? Consider this example,
which isthe definition for VARIABLE:

link

VARI ABLE CREATE 0 , :
execution token

When we execute VARIABLE asin
(body)

VARI ABLE ORANGES

We are indirectly using CREATE to create adictionary head with the name ORANGES and an xt that points to
CREATE's run-time code. Then we are alotting a cell for the variable itself (with"0,").

Since the run-time behavior of avariableisidentical to that of aword defined by CREATE, VARIABLE does not need
to have run-time code of its own, it can use CREATE's run-time code.

How do we specify a different run-time behavior in adefining word? By using the word DOES>, as shown here:

DEFI NI NG WORD CREATE (conpile-tine operations)
DOES> (run-tine operations) ;

http://home.iae.nl/users/mhx/sf11/sf11.html (2 of 15) [2/24/2005 12:39:06 PM]

Leo Brodie's Starting Forth - Chapter 11

Toillustrate, the following could be a valid definition for CONSTANT (athough in fact CONSTANT is usually defined
in machine code):

CONSTANT CREATE , DCES> @;

To see how this definition works, imagine we're using it to define a constant named TROVBONES, like this:

76 CONSTANT TROVBONES

CREATE | Create anew dictionary entry (e.g., TROVBONES)

compile-time portion Compilesthe value (e.g., 76) for the constant from the stack
’ into the constant's parameter field.

Marks the end of the compile-time behavior and the beginning of
DOES> | the run-time behavior. At run time, DOES> will |eave the body

run-time portion address of the word being defined on the stack.

Fetches the contents of the constant, using the body address that
will be on the stack at run time.

@

The words that precede DOES> specify what the mold will do; the words that follow DOES> specify what the product
of the mold will do.

Used in creating a defining word; marks the end of its compile-time portion
runtime: | and the beginning of its run-time portion. The run-time operations are stated in
(-- addr) | higher-level Forth. At run time, the body address of the defined word will be

on the stack.

DOES>

Defining Words You Can define Yourself ﬁ

Here are some examples of defining words that you can create yourself.

Recall that in our discussion of "String Input Commands' in Chap. 10, we gave an examplethat +| {."
employed character-string arrays called NAMVE, EYES, and ME. Every time we used one of these @ 4
names, we followed it with a character count. In the input definition, we wrote

PAD NAME 14 MOVE

and in the output definition we wrote
NAME 14 - TRAI LI NG TYPE . ..

and so on.

Let's eliminate the count by creating a defining word called CHARACTERS, whose product definitions will leave the
address and count on the stack when executed.

WEell useit likethis: if we say
20 CHARACTERS ME

http://home.iae.nl/users/mhx/sf11/sf11.html (3 of 15) [2/24/2005 12:39:06 PM]

Leo Brodie's Starting Forth - Chapter 11
we will create an array called ME, with twenty characters available for the character string.

When we execute VE, we'll get the address of the array and the count on the stack. Now we can write
PAD ME MOVE

instead of
PAD ME 20 MOVE

or
ME - TRAI LI NG TYPE

instead of
ME 20 -TRAI LI NG TYPE

Here's how we might define CHARACTERS:
CHARACTERS

CREATE Create anew dictionary entry (e.g., ME)

compile-time portion Compiles the count (e.g., twenty) into thefirst cell of the
DUP , ALLOT | array for future reference. Then allots an additional
twenty bytes beyond the count for the string.

DOES> Marks the beginning of run-time code, leaving the body address
of the product-word on the stack at run-time.

DUP Copies the body address.

run-time portion Advances the address to point past the count, to the start of the

CELL+ .
character string.

SVWAP @ Swaps the string address with the count address and fetches the
count. The stack now holds (addr count --).

We have just extended our compiler! Our new word CHARACTERS is a defining word that creates a data structure and
procedure that we find useful. CHARACTERS not only simplifies our input and output definitions, it also allows usto
change the length of any string, should the need arise, in one place only (i.e., where we define it).

Our next example could be useful in an application where alarge number of byte (not CHAR!) arrays are needed. Let's
create adefining word called STRI NGas follows:

STRING CREATE ALLOT DCES> + ;

to be used in the form
30 STRI NG VALVE

to create an array thirty bytesin length. To access any bytein this array, we merely say:
6 VALVE C@

which would give us the current setting of hydraulic valve 6 at an oil-pumping station. At run time, VALVE will add the
argument 6 to the body address left by DOES>, producing the correct byte address.

http://home.iae.nl/users/mhx/sf11/sf11.html (4 of 15) [2/24/2005 12:39:06 PM]

Leo Brodie's Starting Forth - Chapter 11

If our application requires alarge number of arrays to be initialized to zero, we might include theinitialization in an
alternate defining word called 0STRI NG

ERASED HERE OVER ERASE ALLOT ;
OSTRI NG CREATE ERASED DCES> + ;

First we define ERASED to ERA SE the given number of bytes, starting at HERE, before ALLOTing the given number of
bytes.

Then we simply substitute ERASED for ALLOT in our new version.

By changing the definition of a defining word, you can change the characteristics of all the member words of that family.
This ability makes program development much easier. For instance, you can incorporate certain kinds of error checking
while you are developing the program, then eliminate them after you are sure that the program runs correctly.

Hereisaversion of STRI NGwhich, at run time, guarantees that the index into the array is valid:

STRING CREATE DUP , ALLOT
DOES> 2DUP @ U< 0= ABORT" Range error " + CELL+ ;

which breaks down as follows:

DUP , ALLOT Compiles the count and allots the given number of bytes.

At run time, given the argument on the stack, produces (arg pfaarg

DOES> 2DUP @ ITIm)

Tests that the argument is not less than the maximum, i.e., the stored
U< 0= count. Since U< is an unsigned compare, negative arguments will
appear as very high numbers and thus will also fail the test.

ABORT" Range error " | Check if thecomparison test fails.

Otherwise adds the argument to the body address, plus an additional

i (0355 cell to skip the count.

Here's another way that the use of defining words can help during development. Let's say you suddenly decide that all of
the arrays you've defined with STRI NG are too large to be kept in computer memory and should be kept on disk instead.
All you have to do is redefine the run-time portion of STRI NG. Thisnew STRI NGwill compute which record on the
disk a given byte would be contained in, read the record into a buffer using INCLUDED, and return the address of the
desired byte within the buffer. A string defined in this way could span many consecutive records (using the same
technique asin Prab. 5, Chap. 10).

Y ou can use defining words to create all kinds of data structures. Sometimes, for instance, it's useful to create
multi-dimensional arrays. Here's an example of a defining word which creates two-dimensional byte arrays of given size:

| [cOfcil|c2(c3
ARRAY (#rows #cols --) ol | |
CREATE DUP , * ALLOT
DOES> (menber: row col -- addr) i
ROT OVER @* + + CELL+ ; r2f [?] |
r3l 1 1 |

To create an array four bytes by four bytes, we would say

4 4 ARRAY BOARD

http://home.iae.nl/users/mhx/sf11/sf11.html (5 of 15) [2/24/2005 12:39:06 PM]

Leo Brodie's Starting Forth - Chapter 11

To access, say, the bytein row 2, column 1, we could say

2 1 BOARD C@

Here's how our ARRAY works in general terms. Since the computer only alows us to have one-dimensional arrays, we
must simulate the second dimension. While our imaginary array looks like this

[[cO0[cl[c2[c3
[ojo [T |23
iz B 6 [7
[r2[8 [0 [10[11
[r3[12 [13 [14 [15

our real array lookslike this
| row# | 0 | 1 | 2 | 3
| offs | 0123 | 4567 | 891011 | 12131415

If you want the address of the bytein row 2, column 1, it can be computed by multiplying your row number (2) by the
number of columnsin each row (4) and then adding your column number (1), which indicates that you want the ninth
byte in thereal array. This calculation is what members of ARRAY must do at run time. You'll notice that, to perform this
calculation, each member word needs to know how many columns are in each row of its particular array. For this reason,
ARRAY must store this value into the beginning of the array at compile time.

For the curious, here are the stack effects of the run-time portion of array:

Operation Contents of stack
row col pfa
ROT col pfarow
OVER @ col pfarow #cols
* col pfarow-index
+ + address
CELL+ corrected address

It is necessary to add a cell to the computed address because the first cell of the array contains the number of columns.

Our final example isthe most visually exciting, if not the most useful.

\ Shapes, using a defining word.
DECI MAL

star [CHAR] * EMT ;

.row CR 8 0 DO

DUP 128 AND | F star
ELSE SPACE

http://home.iae.nl/users/mhx/sf11/sf11.html (6 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

THEN
1 LSH FT
LOOP DRCP ;

SHAPE CREATE 8 0 DO C, LOOP
DCES> DUP 7 + DO | C@.row -1 +LOOP CR ;

HEX 18 18 3C 5A 99 24 24 24 SHAPE nan
81 42 24 18 18 24 24 81 SHAPE equis
AA AA FE FE 38 38 38 FE SHAPE castl e
DECI MAL

. ROWprints a pattern of stars and spaces that correspond to the 8-bit number on the stack. For instance:

2 BASE ! ok
00111001 . ROW
* % % * Ok

DECI MAL_ok

The defining word SHAPE takes eight arguments from the stack and defines a shape which, when executed, prints an
8-by-8 grid that corresponds to the eight arguments. For example:

MAN

* %
* %
* k% k%

* **%* *

* *

* *

* *
ok

In summary, defining words can be extremely powerful tools. When you create a new defining word, you extend your
compiler. Traditional languages like Fortran or BASIC do not provide this flexibility because these traditional compilers
and interpreters are inflexible packages that say, "Use my instruction set or forget it!"

The real power of defining words s that they can simplify your problem. Using them well, you can shorten your
programming time, reduce the size of your program, and improve readability. Forth's flexibility in thisregard is so
radical in comparison with traditional languages that many people don't even believe it. Well, now you've seen it.

The next section introduces still another way to extend the ability of Forth's compiler.

How to Control the Colon Compiler

Compiling words are words used inside colon definitions to do something at compile time. The most obvious examples
of compiling words are control-structure words such as IF, THEN, DO, LOORP, etc. Because Forth programmers don't
often change the way these particular words work, we're not going to study them any further. Instead we'll examine the
group of words that control the colon compiler and thus can be used to create any type of compiling word.

Recall that the colon compiler ordinarily looks up each word of a source definition and compiles each word's address
into the dictionary entry--that's all. But the colon compiler does not compile the address of a compiling word--it executes
it.

http://home.iae.nl/users/mhx/sf11/sf11.html (7 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

How does the colon compiler know the difference? By checking the definition's " precedence bit." If the bit is " off," the
address of the word is compiled. If the bitis"on," the word is executed immediately; such words are called "immediate"
words.

The word IMMEDIATE makes aword "immediate.”" It is used in the form:

name definition ; | MVED ATE
that is, it is executed right after the compilation of the definition.

To give and immediate example, let's define

SAY-HELLO ." Hello" ; | MVED ATE

We can execute SAY- HELL Ointeractively, just aswe could if it were not immediate.

SAY- HELLO Hel | 0 ok
But if we put SAY- HELL Oinside another definition, it will execute at compile time:

GREET SAY-HELLO ." | speak Forth " ; Hello ok

rather than at execution time:

GREET | speak Forth ok

Before we go on, let's clarify our terminology. Forth folks adhere to a convention regarding the terms "run time" and
"compiletime." In this example, the terms are defined relative to GREET. Thus we would say that SAY- HELLOhas a
"compile-time behavior" but no "run-time behavior.” Clearly, SAY- HEL L O does have a run-time behavior of its own,
but relative to GREET it does not.

To keep our levels straight, let's call GREET in this example the "compilee”; that is, the definition whose compilation
we'rereferring to. SAY- HELL O has no run-time behavior in relation to its compilee.

Here's an example of an immediate word that you're familiar with: the definition of the compiling word BEGIN. It's
simpler than you might have thought:

BEG N HERE ; | MMEDI ATE

BEGIN simply saves the address of HERE at compile time on the stack. Why? Because sooner or later an UNTIL or
REPEAT is going to come aong, and either has to know what address in the dictionary to return to in the event that it
must repeat. Thisisthe address that BEGIN left on the stack.

BEGIN's compile-time behavior is leaving HERE on the stack. But BEGIN compiles nothing into the compilee; thereis
no run-time behavior for BEGIN.

Unlike BEGIN, most compiling words do have a run-time behavior. To have a run-time behavior, aword has to compile
into the compilee the address of the run-time behavior, which must already have been defined as aword.

A good exampleis DO. Like BEGIN, DO must provide, at compile time, a HERE for LOOP or +LOOP to return to. But
unlike BEGIN, DO also has a run-time behavior: it must push the limit and index onto the return stack.

The run-time behavior of DO is defined by a lower-level word, sometimes called (DO) or 2>R. The definition of DO is
this:

DO POSTPONE 2>R HERE ; | MVEDI ATE

http://home.iae.nl/users/mhx/sf11/sf11.html (8 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

The word POSTPONE finds the address of the next word in the definition (in this case 2>R) and | 2>R
compilesits address into the compilee definition, so that at run-time 2>R will be executed. |
\compilee definition

Another example is the definition of ;. At compile time, semicolon must do the following things:
1. compilethe address of EXIT into the dictionary entry being compiled,
2. expose the new word to the colon compiler, and
3. leave compilation mode.

Here's the definition of semicolon:

POSTPONE EXIT REVEAL POSTPONE [; | MVEDI ATE

Thefirst phrase compiles EXIT, providing the run-time behavior. The second phrase, which isthe
compile-time behavior, first exposes the word being compiled and then gets out of the compiler.

What is the reason for REVEAL? When words are in the process of being compiled, they are not yet
findable by the colon compiler. Thisis done to make it possible to redefine existing words in terms of
the old definition plus additional code, for example:

CR CR SPACE ;

If during the compilation of the new CR its name were findable, the name of the original CR would
be blocked, and we would have had to do, e.g.:

cr CR;
CR _cr_ SPACE ;

The word POSTPONE can also be used to compile an immediate word as though it were not immediate. Given our
previous example, in which SAY- HELL Ois an immediate definition, we might define

GREET POSTPONE SAY-HELLO ." | speak Forth " ; _ok
to force SAY- HELL Oto be compiled rather than executed at compile time. Thus:

GREET Hello | speak Forth ok

Be sure to note the "intelligence” built into POSTPONE. POSTPONE parses the next word in the input stream, decides if
it isimmediate or not, and proceeds accordingly. If the word was not immediate, POSTPONE compiles the address of
the word into a compilee definition; think of it as deferred compilation. If the word is immediate, POSTPONE compiles
the address of this word into the definition currently being defined; thisis ordinary compilation, but of an immediate
word which otherwise would have been executed.

To review, here are the two words which are useful in creating new compiling words:

Marks the most recently defined word as one which, when
| MVEDI ATE (--) encountered during compilation, will be executed rather than being
compiled.

1. Used in the definition of a compiling word. When the
compiling word, in turn, is used in a source definition, the
execution token of xxx will be compiled into the dictionary

entry so that when the new definition is executed, xxx will be
POSTPONE xxx (--) executed.

2. Used in acolon definition, causes the immediate word xxx to
be compiled as though it were not immediate; xxx will be
executed when the definition is executed.

http://home.iae.nl/users/mhx/sf11/sf11.html (9 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

More Compiler-controlling Words

There are two other compiler control words you should know. The words [and | can be used
inside a colon definition to stop compilation and start it again, respectively. Whatever words . 4
appear between them will be executed "immediately", i.e., at compile time.

Consider this example:
SAY-HELLO ." Hello " ; a

: GREET [SAY-HELLO] ." | speak Forth " ; _Hello ok - -
GREET_1 speak Forth ok

In this example, SAY- HELLOis not an immediate word, yet when we compile GREET, SAY- HEL L O executes
"immediately."

For a better example we first need to introduce the word LITERAL.

Asyou may recall, anumber that appearsin acolon definitionis called a"literal." An exampleisthe 4" in the definition

FOUR- MORE 4 + ;

The use of aliteral in acolon definition requires two cells. The first contains the execution =
token of aroutine which, when executed, will push the contents of the second cell (the |§|E|5|U|ﬁ|_|ﬁ|6|ﬁ|ﬁl

number itself) onto the stack. | link
lexecution token

The name of this routine may vary; let's call it the "run-time code for aliteral," or smply
(LITERAL). When the colon compiler encounters a number, it first compiles the run-time | (LITERAL)

code for aliteral, then compiles the number itself. | 4
+
The word you will use most often to compile aliteral isLITERAL (no parentheses). I T

LITERAL compiles both the run-time code and the value itself. To illustrate:

FOUR-MORE [4] LITERAL + ;

Here theword LITERAL will compile asalitera the "4" that we put on the stack between the square brackets. We get a
dictionary entry that isidentical to the one shown above.

For amore useful application of LITERAL, recall that in Chap. 8 we created an array called LI M TS that consisted of
five cells, each of which contained the temperature limit for adifferent burner. To simplify access to this array, we
created aword called LI M T. The two definitions looked like this:

VARl ABLE LIM TS 4 CELLS ALLOT
LIMT (index -- addr) CELLS LIMTS + ;
Now let's assume we will only access the array through theword LI M T. We can eliminate the head of the array (some

bytes and one cell) by using this construction instead:

HERE 5 CELLS ALLOT BASE !
. LIMT (index -- addr) CELLS [BASE @] LITERAL + ;
DECI MAL

In thefirst line we put the address of the beginning of the array (HERE) in the system variable BASE (any other scratch
variable will work). In the second line, we compile this address as aliteral into the definition of LI M T.

http://home.iae.nl/users/mhx/sf11/sf11.html (10 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

Now we know all there isto know about LITERAL, we can also give a better exampleof [and]. [P .
Imagine a colon definition in which we need to type the byte from row 2, column 3, of the array i
BOARD we defined in the previous section. To get the address of this byte, we could use the phrase | Lo for 5 IMITS
- CELLS
BOARD 2 8 (#cols) * 3 + CELL+ + =
s . heaQEbLLIMIT
but it's time consuming to execute A
headG&LLL BT
28* 3+ I
(LCEERBL)
every time we use this definition. Alternatively, we could write -
L1 stdrS
BOARD 19 CELL+ + ["
but it's unclear to human readers exactly what 19 means, and it isirritating that, for portability, we [
still have to write CELL + athough 1 CELLSisjust a constant. EET

’% The best solution isto write

(LITERAL)
—— BOARD [2 8 (#cols) * 3 + CELL+] LITERAL +

Here the arithmetic is performed only once, at compile time, and the result is compiled as aliteral.
Here'sasilly example which may give you some ideas for more practical applications. This definition let's you peek into
the innards of the word itself:

DUMP-THIS [HERE] LITERAL 32 DUWP ." DUWP-TH S" ;

When you execute DUVP- THI S, you will dump the memory into which DUMP- THI S was defined. Y ou should see how
your Forth compilesthe literal value of "here,” the literal "32," the execution token of DUMP, and then how it inlines the
string "DUMP-THIS." (At compile-time, HERE points to the address of the next free code byte. LITERAL compilesthis
number into the definition as aliteral, so that it will serve as the argument for DUMP at run-time.)

By the way, here's the definition of LITERAL:

LI TERAL POSTPONE (LI TERAL) , ; | MVEDI ATE
First it compiles the address of the run-time code, then it compiles the value itself (using comma).

To summarize, here are the additional compiler control words we introduced in this section:

compile-time (--) Used only inside a colon definition. At compile time, compiles a
LI TERAL run-ﬁme(-n) value from the stack into the definition as aliteral. At run time, the
value will be pushed on the stack.
[(--) L eaves compilation mode.
] (--) Enters compilation mode.

http://home.iae.nl/users/mhx/sf11/sf11.html (11 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

left-bracket
right-bracket

Curtain calls

" | This section gives us a chance to say "Goodbye" to the text interpreter and the
| | colon compiler and perhaps to see them in anew light.

48 - Hereisadefinition of INTERPRET that will work in most Forth systems:

| NTERPRET (--)
BEG N
BL FIND | F EXECUTE ?STACK ABORT" Stack enpty"
ELSE NUMBER
THEN
AGAI N ;

WEe've covered each of the words contained in this definition; we can describe INTERPRET in English by simply
"trandating” its definition, like this:

Begin aloop. Within the loop, try to look up the next word from the input stream. If it's not defined, try to convert it to a
number. If it is defined, execute it, then check to see whether the stack isempty. (If itis, exit theloop and print "STACK
EMPTY.") Then repeat the infinite loop.

Asyou can see, the Forth text interpreter is asimple yet powerful structure. Now let's compare its structure with that of
the colon compiler:

1 C--)
BEG N
BL FIND DUP IF -1 = | F EXECUTE ?STACK ABORT" Stack enpty”
ELSE
THEN
ELSE DROP (NUMBER) POSTPONE LI TERAL
THEN
AGAI N ;

The first thing you probably noticed is that the name of the colon compiler isnot :, but]. The definition of : invokes]
after creating the dictionary head and performing afew other odd jobs.

The next thing you may have noticed is that the compiler is somewhat similar to the interpreter. Let's trandlate the
definition into English:

Begin aloop. Within the loop, try to look up the next word from the input stream. If it's not defined, try to convert itto a
number and, if it's a number, compileit asaliteral.

http://home.iae.nl/users/mhx/sf11/sf11.html (12 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

If it isdefined, FIND has tested the word's precedence bit. If the word isimmediate, then execute it and check to see whether
the stack isempty. If it is not immediate, FIND returned an execution token that can be compiled. Then repeat the infinite

loop.

Comparethisto INTERPRET and you'll seethat | could be called an interpreter with the ability to decide whether to
execute or compile any given word. It isthe simplicity of this design that let's you add new compiling words so easily.

In summary, we've shown two ways to extend the Forth compiler:
1. Add new, specialized compilers, by creating new defining words.
2. Extend the existing colon compiler by creating new compiling words.

While traditional compilerstry to be universal tools, the Forth compiler is a collection of separate, smple tools ... with
room for more.

Which approach seems more useful:

SIMPLICITY (:.J»l.]*tllpfi’_xx-i'.i[}j/‘.?

Hereisasummary of the words we've covered in this chapter:

Used in creating a defining word; marks the end of its
compile-time portion and the beginning of its run-time
portion. The run-time operations are stated in higher-level
Forth. At run time, the body address of the defined word
will be on the stack.

run time:

DOES> (- addr)

Marks the most recently defined word as one which, when
| MVEDI ATE () encountered during compilation, will be executed rather
than being compiled.

http://home.iae.nl/users/mhx/sf11/sf11.html (13 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

POSTPONE XXX

(--)

1. Used in the definition of acompiling word. When the
compiling word, in turn, is used in a source
definition, the execution token of xxx will be
compiled into the dictionary entry so that when the
new definition is executed, xxx will be executed.

2. Used in acolon definition, causes the immediate
word xxx to be compiled as though it were not
immediate; xxx will be executed when the definition
is executed.

LI TERAL

compile-time (--)
run-time (-- n)

Used only inside a colon definition. At compile time,
compiles avalue from the stack into the definition as a
literal. At run time, the value will be pushed on the stack.

L eaves compilation mode.

Enters compilation mode.

Review of Terms

Compile-time behavior

1. when referring to defining words: the sequence of instructions which
will be carried out when the defining word is executed--these
instructions perform the compilation of the member words;

2. when referring to compiling words: the behavior of a compiling
word, contained within a colon definition, during compilation of the
definition.

Compilee

adefinition being compiled. In relation to a compiling word, the compilee
is the definition whose compilation the compiling word affects.

Compiling word

aword used inside a colon definition to take some action during the
compilation process.

aword which, when executed, compiles a new dictionary entry. A defining

compilation.

Defining word word specifies the compile-time and run-time behavior of each member of
the "family" of words that it defines.
In Forth dictionary entries, a bit which indicates whether aword should be
Precedence bit executed rather than be compiled when it is encountered during

Run-time behavior

1. when referring to defining words: the sequence of instructions which
will be carried out when any member is executed;

2. when referring to compiling words: a routine which will be executed
when the compilee is executed. Not all compiling words have
run-time behavior.

http://home.iae.nl/users/mhx/sf11/sf11.html (14 of 15) [2/24/2005 12:39:07 PM]

Leo Brodie's Starting Forth - Chapter 11

Problems -- Chapter 11

1. Define adefining word named LOADED- BY that will define words which include afile when they are executed.
Example:

S" mail.forth" LOADED- BY CORRESPONDENCE

would define the word CORRESPONDENCE. When CORRESPONDENCE is executed, thefilermai | . forthis
included (Hint: SLITERAL isNOT useful here). [answer]

2. Define adefining word BASED. which will create number output words for specific bases. For example,

16 BASED. H.
would define H. to be aword which prints the top of the stack in hex but does not permanently change BASE.

DECI MAL
17 DUP H. lj 11 17 ok

answer

3. Define adefining word called PLURAL which will take the address of aword such as CR or STAR and create its
plural form, such as CRS or STARS. You'll provide PLURAL with the execution token of the singular word by
using tick. For instance, the phrase

" CR PLURAL CRS
will define CRS in the same way as though you had defined it

CRS (times --) 0 ?DO CR LOOP :
answer

4. The French words for DO and LOOP are TOURNE and RETOURNE. Using the words DO and L OOP, define
TOURNE and RETOURNE as French "aliases." Now test them by writing yourself afrench loop. [answer]

5. Write aword called LOOPS which will cause the remainder of the input stream, up to the carriage return, to be
executed the number of times specified by the value on the stack. For example,

7LdPSCHAR*EMTSPACE‘E*******Ok

answer

you're being
counted

http://home.iae.nl/users/mhx/sf11/sf11.html (15 of 15) [2/24/2005 12:39:07 PM]

http://validator.w3.org/

http://home.iae.nl/users/mhx/sfl11/shapes.forth

\ Shapes, using a defining word.
DECI VAL
star [CHAR] * EMT ;

.row CR 8 0 DO
DUP 128 AND | F star
ELSE SPACE
THEN
1 LSH FT
LOOP DROP

SHAPE CREATE 8 0 DO C, LOCP
DCES> DUP 7 + DO | C@.row -1 +LOOP CR

HEX 18 18 3C 5A 99 24 24 24 SHAPE man
81 42 24 18 18 24 24 81 SHAPE equis
AA AA FE FE 38 38 38 FE SHAPE castle
DECI MAL

http://home.iae.nl/users/mhx/sfl1/shapes.forth [2/24/2005 12:39:08 PM]

http://home.iae.nl/users/mhx/sf11/11-1.forth
\ Starting Forth Chapter 11, Problem 11-1

D@ (addr -- ul u2) 2@ SWAP ;

LOADED-BY (c-addr u --)
CREATE HERE 2 CELLS + , ($addr) DUP (count) ,
>R HERE R@ MOVE (get string)
R> ALLOT (make roomfor it)
DOES> D@ | NCLUDED ;

http://home.iae.nl/users/mhx/sf11/11-1.forth [2/24/2005 12:39:08 PM]

http://home.iae.nl/users/mhx/sf11/11-2.forth
\ Starting Forth Chapter 11, Problem 11-2

BASED. (conmpile: new base --) (run: n --)

CREATE ,

DCES> @ (new_base)
BASE @ >R (save ol d BASE)
BASE ! .
R> BASE ! ; (restore BASE)

http://home.iae.nl/users/mhx/sf11/11-2.forth [2/24/2005 12:39:09 PM]

http://home.iae.nl/users/mhx/sf11/11-3.forth
\ Starting Forth Chapter 11, Problem 11-3
PLURAL (conpile: xt --) (run: ? #tines --)
CREATE ,

DOES> @LOCALS| xt |
0 ?DO xt EXECUTE LOOP ;

http://home.iae.nl/users/mhx/sf11/11-3.forth [2/24/2005 12:39:09 PM]

http://home.iae.nl/users/mhx/sf11/11-4.forth
\ Starting Forth Chapter 11, Problem 11-4

TOURNE POSTPONE DO ; | MVEDI ATE
RETOURNE POSTPONE LOOP ; | MVEDI ATE
French-1oop 10 0 TOURNE | . RETOURNE ;

http://home.iae.nl/users/mhx/sf11/11-4.forth [2/24/2005 12:39:10 PM]

http://home.iae.nl/users/mhx/sf11/11-5.forth
\ Starting Forth Chapter 11, Problem 11-5

LOOPS (u --)
>IN @LOCALS| in |
0 ?DO in >IN!
0 WORD COUNT EVALUATE
LOOP ;

http://home.iae.nl/users/mhx/sf11/11-5.forth [2/24/2005 12:39:10 PM]

Leo Brodie's Starting Forth - Chapter 12

12 Three Examples

Programming in Forth is more of an "art" than programming in any other language. Like painters drawing brushstrokes, Forth
programmers have complete control over where they are going and how they will get there. Charles Moore has written, "A
good programmer can do a fantastic job with Forth; a bad programmer can do a disastrousjob.” A good Forth programmer
must be conscious of "style."

Forth styleis not easily taught; it's a subject that deserves a book of its own. Some elements of good Forth style include:
o simplicity,
« the use of many short definitions rather than afew longer ones,
« acorrespondence between words and easy-to-understand actions or data structures,
« well-chosen names, and
« well laid-out files, clearly commented.

One good way to learn style, aside from trial and error, isto study existing Forth applications, including Forth itself. In this
book we've included the definitions of many Forth system words, and we encourage you to continue this study on your own.

This chapter introduces three applications which should serve as examples of good Forth style.

The first example will show you the typical process of programming in Forth: starting out with a problem and working
step-by-step towards the solution.

The second example involves a more complex application already written: you will see the use of well-factored definitions and
the creation of an application-specific "language.”

The third example demonstrates the way to translate a mathematical equation into a Forth definition; you will see that working
with fixed-point arithmetic does not necessarily mean sacrificing speed and compactness.

1. WORD game

The example in this section is arefinement of the buzzphrase generator we programmed back in Chap. 10. (Y ou might want to
review that version before reading this section.) The previous version did not keep track of its own carriage returns, causing us
to force CRs into the definition and creating a very ragged right margin. The job of deciding how many whole words can fit on
alineis areasonable application for acomputer and not atrivial one.

The problem isthis: to draft a "brief" which consists of four paragraphs, each paragraph consisting of an appropriate
introduction and sentence. Each sentence will consist of four randomly-chosen phrases linked together by fillers to create
grammatically logical sentences and a period at the end.

The words and phrases have already been edited into thefilephr ases. f or t h. Look at this file now, without looking at
wor dgane. f or t h. (we're pretending we haven't written the application yet).

Filephr ases. f or t h defines the four introductions, compiled into the | NTROS string array. The four (or more, | NTROS is
self-organizing) introductions must be used in sequence. The samefile phr ases. f or t h contains four sets of fillers, in

FI LLER. The four sets are used in sequence, but any of the three versions within a set (organized in columns) is chosen at
random. Again, phr ases. f or t h contains the three columns of buzzwords from our previous version, with some added

words. We've organized the buzz words in separate 1ST- ADJECTI VE, 2ND- ADJECTI VE and NOUN string arrays.

You migh also look at at the sample output that precedes the end of this section, to get a better idea of the desired result.

"Top-down design” is awidely accepted approach to programming that can help to reduce development time. Theideais that
you first study your application as awhole, then break the problem into smaller processes, then break these processes into still
smaller units. Only when you know what all the units should do, and how they will connect together, do you begin to write
code.

The Forth language encourages top-down design. But in Forth you can actually begin to write top-level definitions

http://home.iae.nl/users/mhx/sf12/sf12.html (1 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

immediately. Already we can imagine that the "ultimate word" in our application might be called PAPER, and that it will
probably be defined something like this:

PAPER 4 0 DO | I NTRO SENTENCE LOOP ;
where | NTROuses the loop index as its argument to select the appropriate introduction. SENTENCE could be defined
SENTENCE 4 0 DO | PHRASE LOOP ENDS ;

where PHRASE uses the |oop index as its argument to select the appropriate set, then chooses one of the three versions within
the set. ENDS takes care of thefinal '." and CR at the end of a sentence.

Using our favorite editor, we can enter these top-level definitionsinto wor dgane. f or t h. Of course we can't INCLUDE this
file until we have written our lower-level definitions.

In complicated applications, Forth programmers often test the logic of their top-level definitions by using "stubs' for the
lower-level words. A stub is atemporary definition. It might simply print a message to let us know its been executed. Or it may
do nothing at all, except resolve the reference to its name in the high-level definition.

While the top-down approach helps to organize the programming process, it isn't dways feasible to code in purely top-down
fashion. Usually we have to find out how certain low-level mechanisms will work before we can design the higher-level
definitions.

The best compromise isto keep a perspective on the problem as a whole while looking out for low-level problems whose
solutions may affect the whole application.

In our example application, we can see that it will no longer be possible to force CRs at predictable points. Instead we've got to
invent a mechanism whereby the computer will perform carriage returns automatically.

The only way to solve this problem isto count every character that is typed. Before each word is typed, the application must
decide whether there isroom to type it on the current line or do a carriage return first.

o let's define the variable LI NECOUNT to keep the count and the constant RMARG N with the value 78, to represent the
maximum count per line. Each time we type aword we will add its count to LI NECOUNT. Before typing each word we will
execute this phrase:

(length-of-next-word --) LINECOUNT @+ RMARG N < 0= IF CR

that is, if the length of the next word added to the current length of the line exceeds our right margin, then we'll do acarriage
return.

But we have another problem: how do we isolate words with a known count for each word? For now, let's assume we have
availableaword Spl i t - At - Char . Thisword breaks strings apart, given a specific delimiter.

Let'swrite out a"first draft” of thislow-level part of our application. It will type a single word, making appropriate
calculations for carriage return.

Break string in two at first BL. Leaves the count on
BL Split-At-Char the stack, with the address of the first character
undernesath.

L eaves the incremented count and a copy of the

205 L original count on the stack.

Compute how long the current line would be if a

LI NECOUNT @ + space plus the new word were to be included on it.

RVARG N > Decidesif it would exceed the margin.
| F CR O LI NECOUNT ! If 0, resets the carriage and the count.
ELSE SPACE THEN Otherwise, leaves a space between the words.

Increases the count by the length of the word to be

|
DUP 1+ LI NECOUNT +! typed, plus one for the space.

http://home.iae.nl/users/mhx/sf12/sf12.html (2 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

Types the word using the count and the address left

= by Spl i t - At - Char .

Now the problem is getting Spl i t - At - Char tolook at the stringsin phr ases. f ort h. Thisis handled by INCLUDED,
soif we say

S" phrases. forth" | NCLUDED
then CREATE will make sure all necessary strings are compiled in memory.

To help CREATE do this, we'll define the word $" . Asyou can see from its definition, $" compiles the string (delimited by a
second quotation mark) into the dictionary, with the count in the first byte, and leaves its address on the stack for } $, } s$ and
} r $. To compile the count and string into the dictionary, we simply have to execute WORD, since WORD's buffer is HERE.
We get the string's address as afillip, since WORD also leaves HERE.

All that remainsisto ALLOT the appropriate number of bytes. This number is obtained by fetching the count from the first
byte of the string and adding one for the count's byte.

We have written $" to compile the next string into the dictionary, but also to pile the address of this string on the stack, on top
of the addresses of other strings that were compiled aready just before that. In order to let other words know how many string
addresses are on the stack, $" also increments the top of stack:

("stringl "string2 ... stringN N new string_address --) SWAP 1+ ;
In order to make thiswork for the first string $" must compile, we have the constant ${ put a 0 on the stack.
We now have ${ and $" compiling our strings for us, but at some point these addresses must be stored in the dictionary. There
we can choose one of them to print, when I NTRO or PHRASE need to do so. Because there is clearly work to be done both at

compile and run-time, thisisan ideal job for a defining word. The compile-time work is done in CREATE parts which
typically look as follows:

(u--) DU, (first conpile count) 0 ?DO, LOOP (conmpile u string
addresses)

while the run-time part is handled in DOES> parts, doing something like
DOES> (ix body -- c-addr u) SWAP CELLS + CELL+ @ COUNT ;

This DOES> part is actually usable for } $, which has the rather smple job to deliver | NTROs string, selected by an index on
the stack. Other words that need a string address want more randomness, which is easily provided by using CHOOSE (see the
listingfor}s$ and}r $).

Now we have a mechanism to present stringsto Spl i t - At - Char , the next question is: how do we know when we've gotten
to the end of such astring?

Since we are typing word by word what Spl i t - At - Char outputs, we only have to check whether the character count of
these stringsis larger than zero. Once Spl i t - At - Char getsto the end of itsinput string, it starts returning empty strings.
For example, the phrase

S" Hello, | speak Forth" .PHRASE
should type out the contents of the string, word by word, performing carriage returns where necessary.

How should we structure our definition of .PHRASE? Let's re-examine what it must do:
1. Determine whether there is still aword in the string to be typed.
2. If thereis, type the word (with margin checking), then repeat. If thereisn't, exit.
The two part nature of this structure suggests that we need a BEGIN...WHILE...REPEAT loop. Let's write our problem this
way, if only to understand it better.
BEG N ANOTHER? VWHI LE . WORD REPEAT ...
ANOTHER? will do step 1; . WORD will do step 2.

How should ANOTHER? determine whether there is still aword to be typed from the string? It simply tests the top of stack to
seeif the string count is not yet zero, by using the phrase DUP:

http://home.iae.nl/users/mhx/sf12/sf12.html (3 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

ANOTHER? DUP ; (#chars -- TRUE=string-not-enpty)
The (not properly formed) flag will serve as the argument for WHILE.

How do we compute the strings for .PHRASE to work on? This is accomplished by executing one of the various children of our
compilingword } $,} r $ or } s$. Thus our definition of .PHRASE might be

.PHRASE (c-addr u --) BEG N ANOTHER? VWH LE .WORD REPEAT 2DROP ;

We need the 2DROP because, when we exit the loop, we will have the final address of Spl i t - At - Char and a zero count on
the stack, neither of which we need any longer.

How do we define . WORD? Actually, we've defined it already, a few pages back. However, it paysto split . WORD up into a
few other useful words, so that it looks like this:

-FITS? linecount @+ RMARG N > ;
SPACE' linecount @IF SPACE 1 linecount +! THEN ;
CR CR O linecount ! ;

.WORD (addrl1l #charsl -- addr2 #chars2)
BL Split-At-Char
DUP 1+ (space!) -FITS? IF CR THEN
SPACE' TYPE' ;

Now we have our word-typing mechanism. But let's see if we're overlooking anything. For example, consider that every time
we start a new paragraph, we must remember to reset LI NECOUNT to zero. Otherwise our . WORD will think that the current
lineisfull when it isn't. We should ask ourselves this question: is there ever a case in this application where we would want to
perform a CR without resetting LI NECOUNT? The answer is no, by the very nature of the application. For this reason we
defined

CR CR O LINECOUNT ! ;
to create aversion of CR that is appropriate for this application. We have used this CR in our definition of . WORD.

We should aso consider our handling of spaces between words. By using the phrase
IF CR ELSE SPACE THEN

before typing each word, we guarantee that there will be a space between each pair of words on the same line but no space at
the beginning of successive lines. And since we are typing a space before each word rather than after, we can place a period
immediately after aword, aswe must at the end of a sentence.

But there is a problem with thislogic: at the beginning of a new paragraph, we will always get one space before the first word.
Our solution: to redefine SPACE so that it will be sensitive to whether or not we're at the beginning of aline, and will not
spaceif we are:

SPACE LINECOUNT @ |F SPACE THEN ;
If LI NECOUNT is"0" then we know we are at the beginning of aline, because of the way we have redefined CR.

While we are redefining SPACE, it would be logical to include the phrase
1 LI NECOUNT +!

in the redefinition. Again our reasoning is that we should never perform a space without incrementing the count.

Let's assume that we have edited our definitionsinto wor dgane. f or t h. Notice that we had very little typing to do,
compared with the amount of thinking we've done. Forth source code tends to be concise.

Now we can define our in-between-level words -- words like | NTRO and PHRASE that we have already used in our
highest-level words, but which we didn't define because we didn't have the low-level mechanism.

Let's start with | NTRO. The finished definition of | NTROlooks like this:
INTRO (u--) CR intros .PHRASE ;

Our mechanism has given us avery easy way to select strings. We can test this definition by itself, as follows:

http://home.iae.nl/users/mhx/sf12/sf12.html (4 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

O INTRO (or 1, 2 or 3 INTRO)
In this paper we will denonstrate that ok

Notice that we put the argument to | NTROon the stack first.

The way to get aFl LLER phraseis alittle more complicated. All of it is handled by the DOES> part of } s$. Since we are
dealing with sets, not lines, and since the sets all have three strings, we must multiply the loop index for fi | | er by 3. To pick
one of the 3 versions within the set, we must choose a random number under three, add it to the index so far, convert it to cells,
then add this result to the beginning of the set, taking into account the count of strings in front. We can define

DOES> (ix --) DUP @1- ROT - 3 * 3 CHOOSE + CELLS + CELL+ @ COUNT ;
TheDUP @ 1- ROT - isthere because we compiled the stringsin reverse order of their specificationin phr ases. fort h,
and therefore need to find the complement of the actual compiled number of strings.
Again we can test this definition by writing

3 FI LLER
to function as ok

The remaining words in the application are similar to their previous counterparts, stated in terms of the new mechanism.

Hereis a sample of the output. (We've added REDO as an afterthought so that we'd be able to print the same part more than
once.)

In this paper we will denonstrate that by using synchroni zed third generation
capability bal anced by qualified digital projections it becones not
unfeasible for all but the |east stand-al one organizational hardware to
function as transient undocunented nobility.

On the one hand, studies have shown that by applying avail abl e resources
towards synchroni zed fail-safe nobility coordi nated with random cont ext
sensitive mobility it is possible for even the nbst responsive nanagenent
nmobility to avoid partial unilateral engineering.

On the ot her hand, however, practical experience indicates that with
structured depl oynent of stand-alone fail-safe concepts coordinated with
optimal omirange tinme phasing it is possible for even the nost qualified
nonitored utilities to avoid optional undocunented utilities.

In summary, then, we propose that by using total increnental programm ng
coordinated wth representative policy engineering it is possible for even
t he nost responsive transitional engineering to generate a high |evel of
conpati bl e i ncrenental engi neering.

2. File Away!

Our second example consists of asimple filing system. It is amoderately useful application, and a good one to learn Forth
from. We have divided this section into four parts:

1. A "How To" for the end user. Thiswill give you an idea of what the application can do.
2. Notes on the way the application is structured and the way certain definitions work.

3. A glossary of al the definitions in the application.

4. A listing of the application, including the data files themselves.

http://home.iae.nl/users/mhx/sf12/sf12.html (5 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

How to Use the Simple File System

This computer filing system lets you store and retrieve information quicky and easily. At the moment, it is set up to handle
people's names, occupations, and phone numbers. Not only doesit alow you to enter, change, and remove records, it aso
allows you to search the file for any piece of information. For example, if your have a phone number, you can find the person's
name; or, given aname, you can find the person'sjob, etc.

For each person thereis a"record" which contains four "fields." The names which specify each of these four fields are
SURNANVE G VEN JOB PHONE

("Given," of course, refersto a person's given name, or first name.)

File Retrieval

Y ou can search the file for the contents of any field by using the word FI ND, followed by the field-name and the contents, as
in

FI ND JOB newscasterDan Rat her ok

If any "job" field contains the string "newscaster,” then the system prints the person's full name. If no such field exists, it prints
"NOT IN FILE."

Once you have found afield, the record in which it was found becomes "current." Y ou can get the contents of any field in the
current record using the word GET. For instance, having entered the line above, you can now enter

GET phone ESSS- 9876 ok

The FI ND command will only find the first instance of the field that you are looking for. To find out if there is another
instance of the field that you last found, use the command ANOTHER. For example, to find another person whose "job" is
"newscaster," enter

AI\IOTHEF1,‘JIJessi ca Savitch ok

and

ANOTHEFr ank Reynol ds ok

When there are no more people whose job is "newscaster” in the file, the ANOTHER command will print "NO OTHER."

Tolist al the names whose field contains the string that was last found, use the command ALL :

ALLE
Dan Ra{t her

Jessi ca Savitch
Fr ank Reynol ds

ok

Since the surname and given name are stored separately, you can use FI ND to search the file on the basis of either one. But if
you know the person's full name, you can often save time by locating both fields at once, by using the word FULL NANE.
FULLNAME expects the full name to be entered with the last name first and the two names separated by acomma, asin

FULLNAMVE Wonder, St evi eljSt evi e Wnder ok

(There must not be a space after the comma, because the comma marks the end of thefirst field and the beginning of the
second field.) Like FI ND and ANOTHER, FUL L NAME repeats the name to indicate that it has been found.

Y ou can actually find any pair of fields by using the word PAI R. Y ou must specify both the field names and their contents,
separated by a comma. For example, to find a newscaster whose given name is Dan, enter

PAI R JOB newscast er, G VEN DanDan Rat her ok

http://home.iae.nl/users/mhx/sf12/sf12.html (6 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12
File Maintenance

To enter anew record, use the command ENTER, followed by the surname, given name, job, and phone, each separated by a
comma only. For example,

ENTER Nur eyev, Rudol f, Bal | et dancer, 555- 1234|_‘J ok

To change the contents of a single field within the current record, use the command CHANGE followed by the name of the
field, then the new string. For example,

CHANGE JOB choreographerE ok

To completely remove the current record, use the command REMOVE:

el ok

Comments

This section is meant as a guide, for the novice Forth programmer, to the glossary and listing which follow. We'll describe the
structure of this application and cover some of the more complicated definitions. As you read this section, study the glossary
and listing on your own, and try to understand as much as you can.

Turn to the listing now. Near the end, this file contains the definitions for all nine end-user commands we've just discussed.
Notice how simple these definitions are, compared to their power!

Thisis acharacteristic of awell-designed Forth application. Notice that the word - FI ND, the elemental file-search word, is
factored in such away that it can be used in the definitions of FI ND, ANOTHER, and ALL, aswell asin the internal word,
(PAI R) , whichisused by PAI Rand by FULLNANE.

WEe'll examine these definitions shortly, but first let'slook at the overall structure of this application.

One of the basic characteristics of this application is that each of the four fields has a name which we can enter in order to
specify the particular field. For example, the phrase
SURNAME PUT
will put the character string that follows in the input stream into the "surname” field of the current record. The phrase
SURNAME . FI ELD
will print the contents of the "surname” field of the current record, etc.

There are two pieces of information that are needed to identify each field: the field's starting address relative to the beginning
of arecord and the length of the field.

In this application, arecord islaid out like this:

[offset [16 32 [56
| contents | surname | given | job | phone
| sze | 16 16 [24 [8

For instance, the "job" field starts thirty-two bytes in from the beginning of every record and continues for twenty-four bytes.

We chose to make arecord exactly sixty-four bytes long, but this system can be modified to hold records of any length and any
number of fields.

To add more fields, just add lines with the length of the new field, followed by RECORD new-fi el d- name. For example, to add
afield FOOwhich isthirty byteslong, do

30 RECORD foo
etc. The system automatically computes the values of R- LENGTH and #MAXRECS.

We've taken the two pieces of information for each field and put them into a double-length table associated with each field
name. Thistask is performed by the defining word RECORD, at compile-time. Our definition of JOB, therefore eventually

http://home.iae.nl/users/mhx/sf12/sf12.html (7 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12
executes CREATE, asin

[o]o]e]

link

execution token

32

24

CREATE JOB 32 , 24 ,
The literal 32 is computed by the system, which keeps track of the actual offset into arecord through updating R- LENGTH.

Thus when we enter the name of afield, we are putting on the stack the address of the table that describes the "job" field. We
can fetch either or both pieces of information relative to this address.

Let's call each of these entries a"field specifying table,” or a"spec table" for short.

Part of the design for this application is derived from the requirements of FI ND, ANOTHER, and ALL; that is, FI ND not only
hasto find a given string within a given type of field, but also needs to "remember" the string and the type of field so that
ANOTHER and ALL can search for the same thing.

We can specify the kind of field with just one value, the address of the spec table for that type of field. This means that we can
"remember" the type of field by storing this address into KEEP.

Kl ND was created for this purpose, to indicate the "kind" of field.
To remember the string, we have defined a buffer called WHAT to which the string can be moved.

The word KEEP serves the dual purpose of storing the given field type into KI ND and the given character string into WHAT. If
you look at the definition of the end-user word FI ND, you will see that the first thing it does is KEEP the information on what
is being searched for. Then FI ND executes the internal word - FI ND, which uses the information in KI ND and VWHAT to find a
matching string.

ANOTHER and ALL also use - FI ND, but they don't use KEEP. Instead they look for fields that match the one most recently
"kept" by FI ND.

So that we can GET any piece of information from the record we have just "found,” we need a pointer to the "current” record.
This need is met by the value #RECORD. The operations of the words SET, TOP and DOWN should be fairly obvious to you.

The word RECORD@uses its stack parameter to compute the absolute address (the computer-memory address, somewherein
the disk buffer) of the beginning of the current record. RECORD@al so makes sure that the record really isin the disk buffer.

While a spec table contains the relative address of the field and its length, we usually need to know the field's absol ute address
and length for words such as TY PE, MOVE, and PARSE. Look at the definition of the word FI ELD to see how it converts the
address of a spec table into an absolute address and length. Then examine how FI ELDis applied in the definition of . FI ELD.

The word PUT also employs FI ELD. Its phrase
>R KBD, R> >FLD_
leaves on the stack the arguments
addr-of -string count-of-string absolute-addr-of-field size-of-field

for MOV E to move the string into the appropriate field of the current record. Before we move the string, we fill the field with
spaces, to blank possible old contents. Also, we make sure the length of the moved string is not larger than the size of the field.

There are two things worth noting about the definition of FREE. Thefirst is the method used to determine whether the record
is empty. We've made the assumption that if the first byte of arecord is empty, then the whole record is empty, because of the
way ENTER works. If the first byte contains a character whose ASCII value is less than or equal to BL, then it is not a printing

http://home.iae.nl/users/mhx/sf12/sf12.html (8 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

character and the line is empty. As soon as an empty record isfound, LEAVE ends the loop. #RECORD will contain the
number of the free record.

Another thing worth noting about FREE isthat it abortsif the fileisfull, that is, if it runs through all the records without
finding one empty. We can use a DO loop to run through all the records, but how can we tell that the loop has run out before it
has found an empty record?

The best way isto leave a TRUE on the stack, to serve as aflag, before beginning the loop. If an empty record is found, we can
change the flag to FAL SE (with the word INV ERT) before we leave the loop. When we come out of the loop, we'll have a
TRUE if we never found an empty record, a FALSE if we did. Thisflag will be the argument for ABORT".

We use asimilar technique in the definition of - FI ND. - FI ND must return a flag to the word that executed it: FI ND,
ANOTHER, ALL or (PAI R) . The flag indicates whether a match was found before the end of the file was reached. Each of
these outer words needs to make a different decision based on the state of thisflag. Thisflagis TRUE if amatch isnot found
(hence the name - FI ND). The decision to use negative logic was based on the way - FI NDis used.

Because the flag needs to be TRUE if amatch is not found, the easiest way to design thisword is to start with a TRUE on the
stack and change it to a FALSE only if amatch isfound.

Now that you understand the basic design of this application, you should have no trouble understanding the rest of the listing,
using the glossary as aguide.

Filer Glossary

ICR A constant that defines the length in bytes of a newline sequence.
A constant that defines the maximum number of records in the data
#MAXRECS file. To increase this number, add lines containing R-LENGTH
spaces, followed by a newline, to the datafile.
FILE A value that holds the handle of the file containing the data.
KIND A vaue .that contains the address of the field-specifying table for the
type of field that was last searched for by FIND.
R-LENGTH A value that contains the length in bytes of a single record.
#RECORD A value that points to the current record.
A defining word to create field-specifying tables. Takes the field
width in bytes as a parameter and updates R-LENGTH. All uses of

RECORD RECORD should happen before #MAXRECS is defined. Usage: 10
RECORD foo

SURNAME Returnsthe qddre$ of the field-specifying table for the "surname
(last name) field.

GIVEN Returns the address of the field-specifying table for the "given" (first
name) field.

JOB Returns the address of the field-specifying table for the "job" field.

PHONE E:ltélrns the address of the field-specifying table for the "phone

WHAT Returns the address of a buffer that contains the string that is being
searched for, or was last searched for, by FIND.

RBUF Returns the address of a buffer that contains the current record data.
Makes sure al changed data is committed to disk, but does not close

FLUSH hefile

UPDATE Writesthe datafor the current record to disk.

RECORD@ Insuresthat the specified record isin RBUF.

SELD Given thg addrgss of afield-specifyi ng tapl e, refurns the address of
- the associated field in RBUF, along with its assigned length.

Given the address of afield-specifying table, returns the address of

>FLD the associated field in RBUF, along with its actual length.

http://home.iae.nl/users/mhx/sf12/sf12.html (9 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

FIELD
FIELD
SET
TOP

DOWN
.NAME

READ

PUT

KEEP

FREE

-FIND

(PAIR)

ENTER

REMOVE
CHANGE

GET

FIND

ANOTHER

ALL

PAIR

Insures that the associated field in the current record isin adisk
buffer and returns the address of the field in the buffer along with its
actual length.

From the current record, types the contents of the field that is
associated with the field-specifying table at addr.

Sets the record pointer to the specified record.

Resets the record pointer to the top of thefile.

Moves the record pointer down one record.

Prints the full name found in the current record.

Moves a character string, delimited by a comma or by a carriage
return, from the input stream to atemporary buffer, then returnsits
address and count.

Moves a character string, delimited by a comma or by a carriage
return, from the input stream into the field whose field-specifying
table address is given on the stack.

Moves a character string, delimited by a comma or by a carriage
return, from the input stream into WHAT, and saves the address of
the given field in KIND, for future use by -FIND.

Starting at the top of thefile, finds the first record that isfree, that is,
whose count is zero. Abortsif thefileisfull.

Beginning at #record and proceeding down, compares the contents of
the field indicated by KIND against the contents of WHAT.

Starting from the top, attempts to find a match on the contents of
WHAT, using KIND to indicate the type of field. If amatch is made,
then attempts to match a second field, whose type is indicated by
"field", with the contents { c-addr u}. If both match, prints the name;
otherwise repeats until a match is made or until the end of thefileis
reached, in which case prints an error message.

Finds the first free record, then moves four strings delimited by
commas into the surname, given, job and phone fields of that record.
Usage: ENTER lastname,firstname,job,phone

Erases the current record.

Changes the contents of the given field in the current record.

Usage: CHANGE field-name new-contents

Prints the contents of the given type of field from the current record.
Usage: GET field-name

Finds the record in which there is a match between the contents of
the given field and the given string.

Usage: FIND field-name string

Beginning with the next record after the current one, and using KIND
to determine type of field, attemptsto find a match on WHAT. If
successful, types the name; otherwise an error message.

Beginning at the top of the file, uses KIND to determine type of field
and finds al matches on WHAT. Types the full name(s).

Finds the record in which there is a match between both the contents
of thefirst given field and the first given string, and also the contents
of the second given field and the second given string. Commais
delimiter.

Usage: PAIR fieldl stringl,field2 string2

Finds the record in which there is a match on both the first and last

FULLNAME names given.

Usage: FULLNAME lastname,firstname

http://home.iae.nl/users/mhx/sf12/sf12.html (10 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

Filer Listing

Thelisting is here.

3. No Weighting

Our final example is a math problem which many people would assume could only be solved by using floating point. It will
illustrate how to handle afairly complicated equation with fixed-point arithmetic and demonstrate that for all the advantages of
using fixed-point, range and precision need not suffer. Of course, when the hardware does have floating point one should
preferably use that instead, and we show how to do that, too. Using fixed-point has the slight disadvantage that, in order to
correctly compute scale factors, we have to know our Forth's number of bits per cell. For modern Forths the number of bits per
cell can be 16, 32, 64, or even higher. In order not to complicate the following description too much, we will assume 16-bit
hardware. That is probably the only environment this example will be useful for, anyway. Also, we'll assume 1 CHARS is
equivalent to one byte.

In this example we will compute the weight of a cone-shaped pile of material, knowing the height of the pile, the angle of the
slope of the pile, and the density of the material.

To make the example more "concrete," let's weigh several huge piles of sand, gravel, and cement. The slope of each pile,
called the "angle of repose," depends on the type of material. For example, sand pilesitself more steeply than gravel.

35°

Loose gravel

(In reality these values vary widely, depending on many factors; we have chosen approximate angles and densities for
purposes of illustration.)

Here is the formulafor computing the weight of a conical pile h feet tall with an angle of repose of theta degrees, where D is
the density of the material in pounds per cubic foot:

T h3 D For Sceptics

3tan’0
Thiswill be the formulawhich we must expressin Forth.

Let's design our application so that we can enter the name of a material first, such as
DRY- SAND
then enter the height of a pile and get the result for dry sand.

Let's assume that for any one type of material the density and angle of repose never vary. We can store both of these values for

http://home.iae.nl/users/mhx/sf12/sf12.html (11 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12
each type of material into atable. Since we ultimately need each angle's —
tangent, rather than the number of degrees, we will store the tangent. For The volume of acone, V, is given by

instance, the angle of repose for apile of cement is 359, for which the 1 . :
tangent is .700. We will store this as the integer 700. ¥V = 3 1 bh* h » wherebisthe radius of the base

Bear in mind that our goal is not just to get an answer; we are
programming a computer or device to get the answer for usin the fastest,
most efficient, and most accurate way possible. Aswe indicated in Chap.
5, to write equations using fixed-point arithmetic requires an extra amount
of thought. But on hardware that would have to emulate floating point, the
effort pays off in two ways:

and h isthe height. We can compute the base by
knowing the angle or, more specifically, the tangent
of the angle. The tangent of an angle is simply the
ratio of the segment marked h to the segment
marked b in this drawing:

1. vastly improved run-time speed,
which can be very important when
there are millions of stepsinvolved in
asingle calculation, or when we must
perform thousands of calculations ﬂ
every minute. Also,
2. program size, which would be critical -

if, for instance, we wanted to put this
application in a hand-held device
specifically designed as a
pile-measuring calculator. Forth is
often used in this type of instrument.

If we

Let's approach our problem by first
considering scale. The height of our piles ranges from 5 to 50 feet. By
working out our equation for a pile of cement 50 feet high, we find that

the weight will be nearly 3,500,000 pounds. call thisangle "theta’, then 400 = ﬁ . Thuswe

But because our piles will not be shaped as perfect cones and because our b
values are averages, we cannot expect better than four or five decimal can compute the radius of the base with

places of accuracy. If we scale our result to tons, we get about 17,500. h _ o

This value will comfortably fit within the range of a single-length number,) = —— - When we substitute this into the
even on 16-bit hardware. For this reason, let's write this application tan©

entirely with single-length arithmetic operators. (Although we will expression for V, and then multiply the result by the
assume 16-bit hardware in the following, the code as shown will run density D in pounds per cubic foot, we get the
unmodified on any ANS Forth.) formula shown in the text.

Applications which require greater accuracy can be written using

double-length arithmetic; to illustrate we've even written a second version of this application using double-length math, as
you'll see later on. But we intend to show the accuracy that Forth can achieve even with 16-bit math.

By running another test with a pile 40 feet high, we find that a difference of one-tenth of afoot in height can make a difference
of 25 tonsin weight. So we decide to scale our input to feet and inches rather than merely to whole feet.
We'd like the user to be able to enter

15 FOOT 2 INCH PILE

where the words FOOT and | NCH will convert the feet and inches into tenths of an inch, and Pl LE will do the calculation.
Here's how we might define FOOT and | NCH:

FOOT 10 * ;
INCH 100 12 */ 5 + 10 / + ;

The use of | NCHis optional.

(By the way, we could as easily have designed input to be in tenths of an inch with adecimal point, like this:
15.2

http://home.iae.nl/users/mhx/sf12/sf12.html (12 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

In this case, NUMBER would convert the input as a double-length value. Since we are only doing single-length arithmetic,
Pl LE could simply begin with DROP, to eliminate the high-order cell.)

In writing the definition of Pl LE, we must try to maintain the maximum number of places of precision without overflowing 15
bits. According to the formula, the first thing we must do is cube the argument. But let's remember that we will have an
argument which may be as high as 50 feet, which will be 500 as a scaled integer. Even to square 500 produces 250,000, which
exceeds the capacity of single-length arithmetic using 16-hbit cells.

We might reason that, sooner or later in this calculation, we're going to have to divide by 2000 to yield an answer in tons. Thus
the phrase
DUP DUP 2000 */

will square the argument and convert it to tons at the same time, taking advantage of */'s double-length intermediate result.
Using 500 as our test argument, the above phrase will yield 125.

But our pile may be as small as 5 feet, which when squared is only 25. To divide by 2000 would produce a zero in integer
arithmetic, which suggests that we are scaling down too much.

To retain the maximum accuracy, we should scale down no more than necessary. 250,000 can be safely accomodated by
dividing by 10. Thus we will begin our definition of Pl LE with the phrase

DUP DUP 10 */
The integer result at this stage will be scaled to one place to the right of the decimal point (25000 for 2500.0).
Now we must cube the argument. Once again, straight multiplication will produce a double-length 32-bits result, so we must
use */ to scale down. We find that by using 1000 as our divisor, we can stay just within single-length range. Our result at this
stage will be scaled to one place to the |eft of the decimal point (12500 for 125000.) and still be accurate to 5 digits.
According to our formula, we must multiply our argument by pi. We know that we can do thisin Forth with the phrase

355 113 */
which causes no problems with scaling.
Next we must divide our argument by the tangent squared, which we can do by dividing the argument by the tangent twice.

Because our tangent is scaled to three decimal places, to divide by the tangent we multiply by 1000 and divide by the table
value. Thus we will use the phrase

1000 TAN(THETA) */

Since we must perform thistwice, let's make it a definition, called / TAN (for divide-by-the-tangent) and use the word / TAN
twicein our definition of PI LE. Our result at this point will be scaled to one place to the left of the decimal (26711 for
267110, using our maximum test values).

All that remainsisto multiply by the density of the material, of which the highest is 131 pounds per cubic foot. To avoid
overflowing, let'stry scaling down by two decimal places with the phrase

DENSI TY 100 */
But by testing, we find that the result at this point for a 50-foot pile of cement will be 34,991, which just exceeds the 15-bit
limit. Now is agood time to take the 2000 into account. Instead of
DENSI TY 100 */
we can say
DENSI TY 200 */
and our answer will now be scaled to whole tons.

You will find thisversion in the listing. As we mentioned, we have also written this application using double-length arithmetic.
In this version you enter the height as a double-length number scaled to tenths of afoot, followed by the word FEET, asin 50.0
feet.

By using double-length integer arithmetic, we are able to compute the weight of the pile to the nearest whole pound. The range
of double-length 32-bit integer arithmetic compares with that of single-precision floating-point arithmetic. Below isa

http://home.iae.nl/users/mhx/sf12/sf12.html (13 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

comparison of the results obtained using a 10-decimal-digit pocket calculator, single-length Forth, double-length (32-hbit)
Forth, and floating-point Forth. The test assumes a 50-foot pile of cement, using the table values.

in pounds in tons

calculator 34,995,633 | 17,497.816

Forth 16-bit single-length | --- 17,495

Forth 16-bit double-length | 34,995,634 | 17,497.817

Forth 32-bit single-length | --- 17,495

Forth 32-bit double-length | 34,995,634 | 17,497.817

Forth floating-point 34,995,633 | 17,497.816

Here's an example of our application's output:

S" spiles.forth"” | NCLUDED ok

cement _ok

10 foot pile_= 138 tons of cenent ok

10 foot 3 inch pile = 151 tons of cenent ok

dry-sand_ok

10 foot pile_= 81 tons of dry sand ok

S" dpiles.forth” | NCLUDED cenent ok

10.0 feet_= 279939 pounds of cenent or 139.969 tons ok

S" fpiles.forth" | NCLUDED cenent ok

10e feet = 279965. 06373598 pounds, or 139.98253187 tons of cenent ok

A noteon "

The defining word MATERI AL takes three arguments for each material, one of which is the address of a string. . SUBSTANCE
uses this address to type the name of the material.

To put the string in the dictionary and to give an address to MATERI AL, we have defined aword called " . Asyou can see from
itsdefinition, " compiles the string (delimited by a second quotation mark) into the dictionary, with the count in the first byte,
and leaves its address on the stack for MATERI AL. To compile the count and string into the dictionary, we simply have to
execute WORD, since WORD's buffer is HERE. We get the string's address as afillip, since WORD also leaves HERE.

All that remainsisto ALLOT the appropriate number of bytes. This number is obtained by fetching the count from the first
byte of the string and adding one for the count's byte.

A Browser Interface for FPILES

Thisinterface is Forth system dependent. It will work for iForth 2.0, after some preparations:
o RuniForth onthefile fsserver.frt
» Executetheword Pl LE- SERVER
« Manipulate the below FORM and press SEND. A new browser window opens with the calculation result.

Height in feet:
® cement

O wet sand
Odry sand

http://home.iae.nl/users/mhx/sf12/sf12.html (14 of 15) [2/24/2005 12:39:17 PM]

Leo Brodie's Starting Forth - Chapter 12

Oclay
O loose gravel
O packed gravel

Review of Terms

Stub

Top-down Programming

you're being
counted

in Forth, atemporary definition created solely to alow testing of a
higher-level definition.

a programming methodology by which alarge application is divided into
smaller units, which may be further subdivided as necessary. The design
process starts with the overview, or "top," and proceeds down to the lowest
level of detail. Coding of the low-level units begins only after the entire
structure of the application has been designed.

http://home.iae.nl/users/mhx/sf12/sf12.html (15 of 15) [2/24/2005 12:39:17 PM]

HTML
o

http://validator.w3.org/

http://home.iae.nl/users/mhx/sf12/phrases.forth

\ The data for the PAPER witer in wordgane.forth
\ Mbre data can be added wi thout changing "nagi c constants."

\ Add strings at will.
${
$" In this paper we will denonstrate that"
$" On the one hand, studies have shown that"
$" On the other hand, however, practical experience indicates that"
$" In summary, then, we propose that"
}$ intros \ in-order sentence openers

\ Add sets of 3 lines at wll.

${
$" by using"
$" by applying avail abl e resources towards"
$" with structured depl oyment of"
$" coordinated with"
$" to offset”
$" bal anced by"
$" it is possible for even the nost"
$" it becones not unfeasible for all but the |east”
$" it is necessary for all”
$" to function as”
$" to generate a high | evel of"
$" to avoid"
}s$ filler \ random skel eton phrase, use one of every set

\ Add strings at will.
${

$" integrated" $" total" $" systenmtized $" parallel™
$" functional” $" responsive" $" optimal" $" synchroni zed"
$" conpati bl e" $" qualified" $" partial" $" stand-al one"
$" randont $" representative" $" optional" $" transient”
}r$ 1st-adjective \ random adj ective #1
\ Add strings at will.
${
$" managenent " $" organi zati on" $" nonitored" $" reciprocal”
$" digital" $" logistical" $" transitional" $" incremental "
$" third generation" $" policy" $" deci sion" $" undocunent ed"
$" context-sensitive" $" fail-safe" $" ommi -range" $" unilateral™
}r$ 2nd-adjective \ random adj ective #2
\ Add strings at will.
${
$" criteria" $" flexibility" $" capability" $" mobility"
$" progranm ng" $" concepts” $" tinme phasing" $" projections”
$" hardware" $" through-put” $" engi neering" $" out-flow
$" superstructures” $" interaction” $" congruence" $" utilities”
}r$ noun \' random noun

http://home.iae.nl/users/mhx/sfl2/phrases.forth [2/24/2005 12:39:18 PM]

http://home.iae.nl/users/mhx/sf12/wordgame.forth

\ wordgane. forth
\ PAPER generator from Starting Forth Chapter 12
\ assunme 1 CHARS == 1 byte per address unit

\ Mbst Forths have this word al ready
. SKIP (addrl nl char -- addr2 n2)
LOCALS| ch |
BEG N DUP
VWH LE OVER C@ch =
VWH LE 1 /STRING
REPEAT THEN ;

\ Mbst Forths have this word al ready
: SCAN (addrl nl char -- addr2 n2)
LOCALS| ch |
BEG N DUP
VWH LE OVER C@ch -
VWH LE 1 /STRING
REPEAT THEN ;

HERE VALUE seed
0 VALUE used

\ Most Forths have RANDOM and CHOOSE
\ Sone Forths don't allow entering HEX with "$" prefixes.
. RANDOM (-- u)

seed TO used

seed $107465 * $234567 +

DUP TO seed ;

CHOOSE RANDOM UM NIP ; (n -- u)

\

VARI ABLE | i necount \ current horizontal output cursor position

78 CONSTANT RMARG N \ right margin

D [CHAR] " WORD DUP C@ 1+ ALLOT SWAP 1+ ; (addr*ul ul "ccc<quote>" -- addr*u2 u2
)

0 CONSTANT ${
->$$ CELLS + CELL+ @COUNT ; (addr ix -- 'strings)

18 CREATE (addr*u u --) DUP , 0 ?DO, LOOP
DOES> (ix -- c-addr u) DUP @1- ROT - ->$$% ;

}s$ CREATE (addr*u u --) DUP 3/ , 0 ?DO, LOOP
DOES> (ix -- c-addr u) DUP @1- ROT - 3 * 3 CHOOSE + ->%$;

}r$ CREATE (addr*u u --) DUP , 0 ?DO, LOOP
DOES> (-- c-addr u) DUP @ CHOOSE ->$% ;

S" phrases. forth" | NCLUDED
" filler >BODY @ CONSTANT #phrases
" intros >BODY @ CONSTANT #i ntros

http://home.iae.nl/users/mhx/sfl2/wordgame.forth (1 of 2) [2/24/2005 12:39:19 PM]

http://home.iae.nl/users/mhx/sf12/wordgame.forth

Split-At-Char (addrl nl char -- addr2+n2 nl-n2 addr2 n2)

LOCALS| ch |
ch SKIP
2DUP ch SCAN TUCK 2>R - 2R> 2SWAP ;
CR CR O linecount ! ;
SPACE' linecount @IF SPACE 1 |inecount +! THEN ;
TYPE' DUP |inecount +' TYPE ; (char --)
-FITS? linecount @+ RMARGA N > ; (#chars -- TRUE=fits-on-this-line)

ANOTHER? DUP ; (#chars -- TRUE=string-not-enpty)

.WORD (addr1 #charsl -- addr2 #chars2)
BL Split-At-Char
DUP 1+ (space!) -FITS? IF CR THEN
SPACE' TYPE' ;

. PHRASE (addr #chars --) \ output formatted text
BEG N ANOTHER? WHI LE .WORD REPEAT 2DROP ;

PHRASE (index --)
filler .PHRASE
1st-adj ective . PHRASE 2nd-adjective . PHRASE
noun . PHRASE ;

| NTRO CR intros .PHRASE ; (paragraph# --)
ENDS [CHAR] . EMT CR ; (there's always roomfor '.')
SENTENCE #phrases 0 DO | PHRASE LOCP ENDS ;
PAPER #intros 0 DO | | NTRO SENTENCE LOCP ;

\ Execute AFTER a PAPER, to reprint it, usage: REDO PAPER
: REDO used TO seed ;

PAPER (try it out)
\ Cccasionally, successive SENTENCEs will | ook very simlar.
\ This is because CHOOSE can return a run of equal val ues.

\ Homework: wite an NCHOOSE that returns a batch of N unique nunbers < m
\ and try to use it in SENTENCE.

http://home.iae.nl/users/mhx/sfl2/wordgame.forth (2 of 2) [2/24/2005 12:39:19 PM]

http://home.iae.nl/users/mhx/sf12/filer.forth

\ filer.forth --------cn-cmmo
\ "Filer" fromStarting Forth Chapter 12

\ Most Forths have this word.
PLACE 2DUP 2>R 1+ SWAP MOWE 2R> C! ; (addr u dest --)

1 CONSTANT /CR \ size of newine string ($0A)
S" filerdat.forth" R'WBIN OPEN FI LE THROW
VALUE file \ handl e of data file
0 VALUE #record \ points to current record
0 VALUE ki nd \ type of field |l ast searched by FIND
0 VALUE r-Ilength \ length of all fields sumed

RECORD CREATE r-length , DUP , r-length + TOr-length ; (size --)

16 RECORD sur nane \ four field buffers
16 RECORD gi ven
24 RECORD j ob

8 RECORD phone

' " >BODY ; (-- '"body)

file FILE-SI ZE THROWDROP r-length /CR + / CONSTANT #nmaxrecs

CREATE what 0 C, r-length ALLOT \ two tenporary buffers
CREATE r buf r-length ALLOT

UPDATE (--)
#record r-length /CR + UV file REPCSI TI ON- FI LE THROW
rbuf r-length file WRI TE-FI LE
ABORT" filer UPDATE :: wite error" ;

\ Fill rbuf with the contents of record #record.

. RECORD@ (rec# --)
r-length /CR + UW file REPCSI TI ON-FI LE THROW
rbuf r-length file READ-FILE
ABORT" filer RECORD@:: read error" DROP ;

>FLD 2@rbuf + SWAP ; (field -- c-addr u)
>FLD >FLD_ -TRAILING ; (field -- c-addr u)
FI ELD #record RECORD@ >FLD ; (field -- c-addr u)
. FIELD >FLD TYPE SPACE ; (field --)

FLUSH file FLUSH FILE ABORT" filer FLUSH error " ; (--)

SET TO #record ; (u--)

TOP 0 SET ; (--)

DOMWN #record 1+ SET ; (--)

.NAME given .FIELD surnane .FlELD ; (--)

KBD, [CHAR] , WORD COUNT ; (-- c-addr u)

PUT >R KBD, R> >FLD_2DUP BL FILL ROT MN MOVE ; (field --)

\ Moves a character string, delimted by a conma or by a carriage return, fromthe input
\ streaminto WHAT, and saves the address of the given field in KIND, for future use

\ by -FIND.

. KEEP TO kind KBD, what PLACE ; (field "string" --)

\ Starting at the top of the file, finds the first record that is free, that is, whose
\ count is zero. Aborts if the file is full
. FREE TOP TRUE (--)

#maxr ecs

http://home.iae.nl/users/mhx/sfl12/filer.forth (1 of 3) [2/24/2005 12:39:19 PM]

http://home.iae.nl/users/mhx/sf12/filer.forth

0 ?DO surnane FIELD NP
0= IF |INVERT LEAVE THEN
DOWN
LOOP
ABCORT" File full" ;

\ Beginning at #record and proceedi ng down, conpares the contents of the field indicated
\ by KIND agai nst the contents of WHAT.
: -FIND TRUE (-- bool)
#maxrecs #record
?DO kind FIELD what COUNT COVPARE
0= IF |INVERT LEAVE THEN
DOVN
LOOP bool ;

\ Starting fromthe top, attenpts to find a match on the contents of WHAT, using KIND to
\ indicate the type of field. If a match is nade, then attenpts to match a second field,
\ whose type is indicated by "field", with the contents {c-addr u}. If both match, prints
t he

\ nanme; otherwi se repeats until a match is nade or until the end of the file is reached,
\ in which case prints an error nessage.

(PAIR) (field c-addr u --)
LOCALS| sz what2 field2 |
TOP
#maxr ecs
0 ?DO | SET
-FIND IF ." Not in file" LEAVE

ELSE field2 >FLD what2 sz COVWARE
0= IF .NAME LEAVE THEN

THEN

LOOP ;
L End user words
\ ENTER Finds the first free record, then noves four strings delimted by conmas into
t he
\ surnane, given, job and phone fields of that record.
\ Usage: ENTER | astnane, firstnane, j ob, phone
\ REMOVE Erases the current record.
\ CHANGE Changes the contents of the given field in the current record.
\ Usage: CHANGE fi el d- name new- contents
\ GET Prints the contents of the given type of field fromthe current record.
\ Usage: CET fiel d-nane
\ FIND Finds the record in which there is a match between the contents of the given
field
\ and the given string.
\ Usage: FIND field-nanme string

\ ANOTHER Beginning with the next record after the current one, and using KIND to
determ ne

\ type of field, attenpts to find a match on WHAT. If successful, types the
namne;

\ ot herwi se an error nessage.

\ ALL Beginning at the top of the file, uses KIND to determnine type of field and
finds

\ all matches on WHAT. Types the full name(s).

\ PAIR Finds the record in which there is a match between both the contents of the
first

\ given field and the first given string, and also the contents of the second
gi ven

\ field and the second given string. Comma is delinter.

http://home.iae.nl/users/mhx/sfl12/filer.forth (2 of 3) [2/24/2005 12:39:19 PM]

http://home.iae.nl/users/mhx/sf12/filer.forth

\ Usage: PAIR fieldl stringl,field2 string2
\ FULLNAME Finds the record in which there is a match on both the first and | ast nanes
gi ven.
\ Usage: FULLNAME | astnane, firstnane
ENTER FREE surname PUT given PUT job PUT phone PUT UPDATE ;
REMOVE rbuf r-length BL FILL UPDATE ;
CHANGE " PUT UPDATE ;
CGET " .FIELD ;
FI ND " KEEP TOP -FIND IF ." Not in file" ELSE .NAME THEN ;
ANOTHER DOMN -FINDIF ." No other" ELSE .NAME THEN ;
ALL TOP BEGAN CR -FIND 0= WH LE .NAME DOM REPEAT ;
PAlI R ! KEEP ' KBD, (PAIR) ;
FULLNANE surnane KEEP given KBD, (PAIR) ;
\ ECF

http://home.iae.nl/users/mhx/sfl12/filer.forth (3 of 3) [2/24/2005 12:39:19 PM]

http://home.iae.nl/users/mhx/sf12/spiles.forth
\ spiles.forth ----------mmommi e
\' "No Weighting" fromStarting Forth Chapter 12

0 VALUE density
0 VALUE tan(theta)
0 VALLE id

" [CHAR] " WORD DUP C@ 1+ ALLOT ; (-- c-addr)

MATERI AL ('"string density tan[theta] --)
CREATE , , ,
DCES> DUP @TO tan(theta)
CELL+ DUP @ TO density
CELL+ @Toid ;
. SUBSTANCE id COUNT TYPE ;

FOOr 10 * ; (feet -- scal ed-height)
INCH 100 12 */ 5 + 10/ + ; (scal ed-height -- scal ed-height')
[/ TAN 1000 tan(theta) */ ; (n-- n")

PILE (scal ed-height --)
DUP DUP 10 */ 1000 */ 355 339 */ [/TAN /TAN
density 200 */ " =" . ." tons of " .SUBSTANCE ;

\ table of materials
(string-address density tan[theta])

" cenment” 131 700 MATERI AL cenent

" | oose gravel" 93 649 MATERI AL | oose-gravel
" packed gravel " 100 700 MATERI AL packed- gravel
" dry sand" 90 754 MATERI AL dry-sand

" wet sand" 118 900 MATERI AL wet - sand

" clay" 120 727 MNMATERI AL cl ay

http://home.iae.nl/users/mhx/sf12/spiles.forth [2/24/2005 12:39:20 PM]

http://home.iae.nl/users/mhx/sf12/dpiles.forth
\ dpiles.forth ---------------mee -
\' "No Weighting" fromStarting Forth Chapter 12

0 VALUE density
0 VALUE tan(theta)
0 VALLE id

" [CHAR] " WORD DUP C@ 1+ ALLOT ; (-- c-addr)
U3 <#### [CHAR] . HOLD #S #> TYPE SPACE ;

MATERI AL ('string density theta --)

CREATE , , ,
DCES> DUP @TO tan(theta)
CELL+ DUP @ TO density
CELL+ @TOid ;
. SUBSTANCE i d COUNT TYPE ;

CUBE 2DUP OVER 10 M/ DROP 10 M/ ; (dl1 -- d2)
{ TAN 1000 tan(theta) M/ ; (dl1 -- d2)

FEET (d --
CUBE 355 339 M/ density 1 M/
[TAN /TAN 5 M+ 1 10 M/
2DUP ." =" D. ." pounds of " .SUBSTANCE
12w/ ." or " U3 ." tons " ;

\ table of materials
(string-address density tan[theta])

" cenment” 131 700 MATERI AL cenment

" | oose gravel" 93 649 MATERI AL | oose-gravel
" packed gravel " 100 700 WMATERI AL packed- gravel
" dry sand" 90 754 MATERI AL dry-sand

" wet sand" 118 900 MATERI AL wet - sand

" clay" 120 727 WMNMATERI AL cl ay

http://home.iae.nl/users/mhx/sfl2/dpiles.forth [2/24/2005 12:39:20 PM]

http://home.iae.nl/users/mhx/sf12/fpiles.forth

\ fpiles.forth ----------mmommi e
\' "No Weighting" fromStarting Forth Chapter 12

FVARI ABLE density
FVARI ABLE PI/3*tan(theta)”-2
0 VALLE id

" [CHAR] " WORD DUP C@ 1+ ALLOT ; (-- c-addr)

MATERIAL ('string --) (F: density theta --)
CREATE FRAD FTAN FSQR 3e F* 1/F PI F* F,
F,

DOES> bUP F@ PlI/3*tan(theta)”-2 F!
FLOAT+ DUP F@ density F!
FLOAT+ @TO id ;

$SUBSTANCE id COUNT ; (-- c-addr u)
MATERI AL: ("mat" --) BL <WORD> EVALUATE ;
HEIGHT: ("height" --) (F: -- r) BL <WORD> >FLOAT 0= IF +NAN ENDIF ;

FEET (F:. feet --)
3e F** DENSITY F@F* PI/3*tan(theta)®-2 F@F*
" =" FDUP F. ." pounds, or "
0.5e-3 F* F. ." tons of " $SUBSTANCE TYPE ;

$FEET (F:. feet -- c-addr u)
PRECI SI ON >R 2 SET- PRECI SI ON
S" Apile of " FDUP (F.N1) $+ S" feet of " $+ $SUBSTANCE $+ S" weighs " $+
3e F** DENSITY F@F* PI/3*tan(theta)"-2 F@ F*
FDUP (F.Nl1) $+ S" pounds, or " $+
0.5e-3 F* (F.N1) $+ S" tons." $+
R> SET- PRECI SI ON

\ Table of materials

\ string-address density t het a

\ pounds/ f oot 3 deg

" cenment” 131e 34.992020e MATERI AL cenent

" | oose gravel" 93e 32.983571e MATERI AL | cose-grave
" packed gravel " 100e 34.992020e MATERI AL packed-grave
" dry sand" 90e 37.016293e MATERI AL dry-sand

" wet sand" 118e 41.987212e MATERI AL wet - sand

" clay"” 120e 36.017152e MATERI AL cl ay

http://home.iae.nl/users/mhx/sfl12/fpiles.forth [2/24/2005 12:39:21 PM]

http://home.iae.nl/users/mhx/sf12/fsserver.frt

(
LANGUAGE : ANS Forth

PRQIECT : Forth Environnents

DESCRI PTI ON : Exanpl e i ntranet wor ki ng

CATEGCORY . Sockets

AUTHOR : Marcel Hendri x

LAST CHANGE : Saturday, March 29, 2003 12:53 PM nhx

* % X X X X X X

NEEDS -sockets
REVI SI ON -pserver "AAA Forth Pile Server Version 1.02 AAA"
PRI VATES

DOC
(-k
Text server, echo sone text.
exanpl e usage: 4444 (port#) server

Wien GET is used:
GET / ?hei ght ¥8A=4. 41&at eri al ¥8A=cl ay HTTP/ 1.0
Accept: inmge/gif, imagel/x-xbitmap, inage/jpeg, inmgel/pjpeg, */*
Referer: file:C\dfwforth\exanpl es\nmodem htm \sf12\sf12. htmn
Accept - Language: en
UA- pi xel s: 1152x864
UA-col or: col or16
UA- CS: W ndows NT
UA- CPU. x86
User-Agent: Mbzilla/2.0 (conpatible; MIE 3.0; Wndows NT)
Host: | ocal host: 4444
Connection: Keep-Alive

Wien POST is used:
POST / HTTP/ 1.0
Accept: inmge/gif, imagel/x-xbitmap, inage/jpeg, imgel/pjpeg, */*
Referer: file:C\dfwforth\exanpl es\nmodem htm \sf12\sf12. htmn
Accept - Language: en
Cont ent - Type: application/x-wwformurl encoded
UA- pi xel s: 1152x864
UA- col or: col or16
UA- CS: W ndows NT
UA- CPU. x86
User-Agent: Mbzilla/2.0 (conpatible; MIE 3.0; Wndows NT)
Host: | ocal host: 4444
Connection: Keep-Alive
Cont ent - Lengt h: 35
Pragma: No- Cache

. hei ght ¥8A=11. 8&mat eri al ¥8A=wet - sand
ELDDOC
FALSE VALUE debug?
DEFER HTTP-ACTION (? -- c-addr u)
+HEADER (c-addrl ul -- c-addr2 u2)

S" HTTP/ 1.1 200 K" +CR
S" Server: iForth 2.0 (console)" +CR $+

http://home.iae.nl/users/mhx/sfl2/fsserver.frt (1 of 3) [2/24/2005 12:39:21 PM]

http://home.iae.nl/users/mhx/sf12/fsserver.frt

S" Accept - Ranges: bytes"” +CR $+
S" Content-Length: " $+ 2 PICK (ODEC. R +CR $+
S" Connection: close" +CR $+
S" Content-Type: text/htm™" +CR $+
+CR

2SWAP +CR $+ ;P

WRAP (c-addrl ul -- c-addr2 u2)

S' <HTML >" +CR
S'" <HEAD> <TI TLE>Pi | e Wei ght s</ TI TLE> </ HEAD>" +CR $+
S~ <BODY BGCOLOR="#F8F8F8" TEXT="#000000">~ +CR $+
S <Hl>Results of Pile Height Query</H1>" +CR $+
2SWAP +CR $+
S~ <P><HR NOSHADE Sl ZE=" 6" ><ADDRESS><CENTER>~ +CR $+
S~ Leo Brodie - | eo@r odi e. conx/ A>~ +CR $+
s </ CENTER></ ADDRESS>" +CR $+
S' </ BODY>" +CR $+
S' </ HTM.>" +CR $+
+HEADER ; P

I NCLUDE fpiles.forth
" $FEET IS HTTP- ACTI ON

HEX-DI G T> "0 - DUP9 >7 AND- ;P (ul -- u2)

\ A'+ stands for a BL, so exchange it. Any '=" or '& characters are bl anked al so.
\ Non-printable characters in the form%AB with A, B hex are translated back to ASCII.
\ The final formshould be directly interpretable by Forth.
FILTER (c-addrl ul -- c-addr2 u2)
OVER 0 LOCALS| offs ptr |

2DUP BOUNDS ?DO | C@ 1 TO offs
Dup '= =
OVER "+ = OR
OVER '& = ORIF DROP BL END F
DUP "% = | F DROP
| 1+ COHEX-DIGA T> 4 LSH FT
| 2+ COHEX-DIA T> OR
3 TO of fs
ENDI F
ptr ¢ 1 +TO ptr

of fs +LOOP
DROP ptr OVER - ;P

\ String is "header <CR><CR>"+"hei ght %8A=10. 1&nat eri al ¥8A=wet - sand"
\ GET can happen when the user presses [refresh] on the result screen.
PROCESS (c-addrl ul -- c-addr2 u2)
debug? IF 2DUP CR TYPE ENDI F
OVER 6 S" GET /?" COWARE
IF OVER C@'P <> 1F 2DROP S" error!" WRAP EXIT ENDIF
(POST used) S" " +CR +CR Split-At-Wrd 2SWAP
ELSE (CET used) 6 /STRING S" HTTP" Split-At-Wrd
ENDI F 2DROP
FI LTER EVALUATE HTTP- ACTI ON WRAP ; P

5 = /queue PRI VATE
htt p-server (socket# --)

0 0 LOCALS| | oc sock |
(socket#) CREATE- SERVER TO sock

http://home.iae.nl/users/mhx/sfl2/fsserver.frt (2 of 3) [2/24/2005 12:39:21 PM]

http://home.iae.nl/users/mhx/sf12/fsserver.frt

CR ." Press a key to stop this server after its next transaction ... "
BEG N
EKEY? 0=
VH LE
sock /queue LI STEN (wait for the client to connect)
sock ACCEPT- SOCKET TO | oc (not going to listen for nore connections)

| oc pad #1024 READ- SOCKET
PROCESS | oc WRI TE- SOCKET

| oc CLOSE- SOCKET (close data socket and go for next client)
REPEAT
EKEY DROP
sock CLOSE- SOCKET ;

pile-server (--) #4444 HITP- SERVER ;
:ABOUT CR ." Try: pile-server -- start the pile server on port 4444"

. ABQUT -pserver CR
DEPRI VE

(* End of Source *)

http://home.iae.nl/users/mhx/sfl2/fsserver.frt (3 of 3) [2/24/2005 12:39:21 PM]

	home.iae.nl
	Starting Forth's home-page
	Leo Brodie's Starting Forth - Intro
	Leo Brodie's Starting Forth - Chapter 1
	http://home.iae.nl/users/mhx/sf1/1-1.forth
	http://home.iae.nl/users/mhx/sf1/1-2.forth
	http://home.iae.nl/users/mhx/sf1/1-3.forth
	Leo Brodie's Starting Forth - Chapter 2
	http://home.iae.nl/users/mhx/sf2/quizzie 2-a.forth
	http://home.iae.nl/users/mhx/sf2/quizzie 2-b.forth
	http://home.iae.nl/users/mhx/sf2/quizzie 2-c.forth
	http://home.iae.nl/users/mhx/sf2/2-1.forth
	http://home.iae.nl/users/mhx/sf2/2-2.forth
	http://home.iae.nl/users/mhx/sf2/2-3.forth
	http://home.iae.nl/users/mhx/sf2/2-4.forth
	http://home.iae.nl/users/mhx/sf2/2-5.forth
	http://home.iae.nl/users/mhx/sf2/2-6.forth
	http://home.iae.nl/users/mhx/sf2/2-7.forth
	Leo Brodie's Starting Forth - Chapter 3
	http://home.iae.nl/users/mhx/sf3/blocks.forth
	Leo Brodie's Starting Forth - Chapter 4
	http://home.iae.nl/users/mhx/sf4/4-1.forth
	http://home.iae.nl/users/mhx/sf4/4-3.forth
	http://home.iae.nl/users/mhx/sf4/4-4.forth
	http://home.iae.nl/users/mhx/sf4/4-5.forth
	http://home.iae.nl/users/mhx/sf4/4-6.forth
	http://home.iae.nl/users/mhx/sf4/4-7.forth
	http://home.iae.nl/users/mhx/sf4/4-8.forth
	http://home.iae.nl/users/mhx/sf4/4-9.forth
	Leo Brodie's Starting Forth - Chapter 5
	http://home.iae.nl/users/mhx/sf5/5-1.forth
	http://home.iae.nl/users/mhx/sf5/5-2.forth
	http://home.iae.nl/users/mhx/sf5/5-3.forth
	http://home.iae.nl/users/mhx/sf5/5-4.forth
	Leo Brodie's Starting Forth - Chapter 6
	http://home.iae.nl/users/mhx/sf6/6-1.forth
	http://home.iae.nl/users/mhx/sf6/6-2.forth
	http://home.iae.nl/users/mhx/sf6/6-3.forth
	http://home.iae.nl/users/mhx/sf6/6-4.forth
	http://home.iae.nl/users/mhx/sf6/6-5.forth
	http://home.iae.nl/users/mhx/sf6/6-6.forth
	http://home.iae.nl/users/mhx/sf6/6-7.forth
	http://home.iae.nl/users/mhx/sf6/6-8.forth
	Leo Brodie's Starting Forth - Chapter 7
	http://home.iae.nl/users/mhx/sf7/7-1.forth
	http://home.iae.nl/users/mhx/sf7/7-3.forth
	http://home.iae.nl/users/mhx/sf7/7-4.forth
	http://home.iae.nl/users/mhx/sf7/7-6.forth
	http://home.iae.nl/users/mhx/sf7/7-7.forth
	http://home.iae.nl/users/mhx/sf7/7-8.forth
	Leo Brodie's Starting Forth - Chapter 8
	http://home.iae.nl/users/mhx/sf8/8-1.forth
	http://home.iae.nl/users/mhx/sf8/8-2.forth
	http://home.iae.nl/users/mhx/sf8/8-3.forth
	http://home.iae.nl/users/mhx/sf8/8-4.forth
	http://home.iae.nl/users/mhx/sf8/8-5.forth
	http://home.iae.nl/users/mhx/sf8/8-6.forth
	Leo Brodie's Starting Forth - Chapter 9
	http://home.iae.nl/users/mhx/sf9/9-1.forth
	http://home.iae.nl/users/mhx/sf9/9-2.forth
	http://home.iae.nl/users/mhx/sf9/9-3.forth
	http://home.iae.nl/users/mhx/sf9/9-4.forth
	http://home.iae.nl/users/mhx/sf9/9-5.forth
	Leo Brodie's Starting Forth - Chapter 10
	http://home.iae.nl/users/mhx/sf10/10-1.forth
	http://home.iae.nl/users/mhx/sf10/10-2.forth
	http://home.iae.nl/users/mhx/sf10/10-3.forth
	http://home.iae.nl/users/mhx/sf10/10-5.forth
	Leo Brodie's Starting Forth - Chapter 11
	http://home.iae.nl/users/mhx/sf11/shapes.forth
	http://home.iae.nl/users/mhx/sf11/11-1.forth
	http://home.iae.nl/users/mhx/sf11/11-2.forth
	http://home.iae.nl/users/mhx/sf11/11-3.forth
	http://home.iae.nl/users/mhx/sf11/11-4.forth
	http://home.iae.nl/users/mhx/sf11/11-5.forth
	Leo Brodie's Starting Forth - Chapter 12
	http://home.iae.nl/users/mhx/sf12/phrases.forth
	http://home.iae.nl/users/mhx/sf12/wordgame.forth
	http://home.iae.nl/users/mhx/sf12/filer.forth
	http://home.iae.nl/users/mhx/sf12/spiles.forth
	http://home.iae.nl/users/mhx/sf12/dpiles.forth
	http://home.iae.nl/users/mhx/sf12/fpiles.forth
	http://home.iae.nl/users/mhx/sf12/fsserver.frt

	BANFIGIBJNMEMMIKBCPFMMFHDJAGJGCC:
	form1:
	x:
	f1:
	f2: cement

	f3:
	f4:

